
IntroducƟon to microcontrollers

CP4375-3

Copyright Matrix TSL 2021

IntroducƟon to microcontrollers

SecƟon 1: IntroducƟon to microcontrollers

SecƟon 2: Using E-blocks

SecƟon 3: IntroducƟon to Flowcode

SecƟon 4: Flowcode - first program

SecƟon 5: Flowcode examples

SecƟon 6: Programming exercises

Appendix 1: Arduino adjustments.

Appendix 2: BTEC NaƟonal level 3 unit 6 mapping

Contents

IntroducƟon to microcontrollers

IntroducƟon

The aim of this course is to introduce you to the concepts of developing electronic systems using
microcontrollers.

In doing so, it offers substanƟal coverage of Unit 6 of the BTEC Level 3 NaƟonal Extended Diploma in
Engineering (the precise mapping of the course to this unit is given on page 9).

On compleƟng this course you will have learned:

 what a microcontroller is.
 how to construct circuits and systems based on microcontrollers.
 how to program microcontrollers.

IntroducƟon

IntroducƟon to microcontrollers

Before you start

This course is an introducƟon to microcontroller programming.

To get the full use out of this course we recommend you have the following:

Flowcode

Flowcode is a soŌware program which allows users to quickly and easily develop complex electronic
systems in a simple manner, it works with a range of microcontrollers, including Microchip’s ‘PIC’
microcontrollers (PIC MCUs), Arduino, and ARM. Flowcode itself is microcontroller neutral - it presents
virtually the same user interface regardless of the microcontroller used. The differences are in the
ardware and the way the program is downloaded and tested.

Hardware

It is always more rewarding when learning about microcontroller programming to see the programs
execute on actual hardware, therefore we recommend that you have some hardware available to send
and execute your created programs onto.

This course is mainly designed around the Matrix E-blocks2 hardware plaƞorm, typically the BL0011
programmer and the BL0114 Combo board, although separate E-blocks (LCD, switches, LEDs, etc) can
also be used.

While most of the course is designed around the E-blocks2, we also recognise that some people may be
using either an Arduino device. So in this course, whenever there is change in the instrucƟons for Arduino
changes, they will be displayed in the following colours:

Arduino users need an Arduino Uno and E-blocks Arduino Uno Shield (BL0055), as well as the Combo
board.

BL0011 programmer.

BL0114 Combo board.

IntroducƟon

IntroducƟon to microcontrollers

Geƫng more InformaƟon

Flowcode

hƩps://www.flowcode.co.uk

From here you can access:

- Flowcode—Geƫng Started Guide

- Flowcode Wiki

- A wide range of Flowcode examples

E-blocks

hƩps://www.matrixtsl.com/eblocks/resources

In the E-blocks secƟon you can get the follow resources:

- E-blocks USB Drivers

- E-blocks example files

- E-blocks User Guide

hƩps://www.matrixtsl.com/eblocks/boards

From the boards pages:

- Specific datasheets for the boards

- Specific board examples

Other Help

hƩps://www.flowcode.co.uk/forums/

The Matrix forum provides an in-depth community of well established, long-term users of Flowcode and
new Flowcode users sharing ideas and solving problems and issues encountered whilst using the
soŌware.

hƩps://www.matrixtsl.com/learning/

The Matrix ‘Learning Centre’ contains many different resources including arƟcles, drivers, curriculum.

IntroducƟon

IntroducƟon to microcontrollers

Course ConvenƟons

The following abbreviaƟons are used in the course:

IntroducƟon

IntroducƟon to microcontrollers

The hardware:
Most exercises use the BL0011 / BL0080 MulƟprogrammer and BL0114 Combo board.

Most of the exercises can also be completed using the Arduino Uno Shield (BL0055). However, these
require different PORT seƫngs.

Hardware and soŌware seƫngs used to test most programs:

Flowcode and download seƫngs:

IntroducƟon

IntroducƟon to microcontrollers

AŌer compleƟng this course, you will be able
to:

1. Send different 8-bit codes to ports of the
microcontroller.

2. Change the logic level of a one single pin.
3. Configure an output icon.
4. Use binary code.
5. Manipulate logic output levels.
6. Use LED’s to display an output.
7. Compile a program to the PIC MCU.
8. Add a delay to slow down execuƟon of a

program.
9. Change the delay interval.
10. Configure a delay icon.
11. Control the speed of a microcontroller.
12. Use an oscilloscope to Ɵme events.
13. Use ConnecƟon Points to introduce

uncondiƟonal branching in a program.
14. Introduce PWM as a means of controlling

the brightness of LEDs.
15. Create an infinite loop.
16. Manipulate logic output levels.
17. Use LEDs to display an output.
18. Create and use a variable.
19. Configure a calculaƟon icon to perform

arithmeƟc and logic calculaƟons.
20. Create and manipulate variables.
21. Perform calculaƟons.
22. Use LEDs with current limiƟng resistors.
23. Create and use a ‘running light’ program,

using the ‘mulƟply-by-two’ method.
24. Create and use a ‘running light’ program,

using the ‘shiŌ-right’ method.
25. Create and populate an array.
26. Create a condiƟonal loop.
27. Input data from switches.
28. Use loops to create LED sequences.
29. Configure an input icon.
30. Configure decision icons and hence add

condiƟonal branching to a program.

31. Control the frequency at which LEDs flash.
32. Use LEDs to display output logic levels.
33. Use temporary memory.
34. Create, populate and manipulate string

variables.
35. Control the display of text and numbers on a

LCD.
36. Use a LCD as an output device for the PIC

MCU.
37. Configure a Component macro for the LCD.
38. Input text and numbers from a keypad and

display messages on the LCD.
39. Use ASCII code to transmit this data.
40. Use mulƟplexed inputs.
41. Configure a Component macro for the keypad.
42. Create data loggers, using 8-bit and 10-bit

data from the ADC.
43. Configure an analogue input.
44. Enter data via switches.
45. Enter informaƟon from light and temperature

sensors.
46. Configure and use the EEPROM.
47. Scroll through EEPROM data.
48. display text and numerical data on the LCD.
49. Use the E-blocks prototype board.
50. Use soŌware macros to simplify the structure

of a program.
51. Create soŌware macros.
52. Use closed loop control.
53. Use PWM to control the brightness of LEDs.
54. Create and use ‘single-pin’ interrupts.
55. Create and use ‘interrupt-on-change’ (IOC)

interrupts.
56. Use real Ɵme operaƟon of a PIC MCU.
57. Create and use Ɵmer interrupts.
58. Use the prescaler to create accurate Ɵme

intervals.
59. Trigger the Ɵmer using the crystal or an

external event.

IntroducƟon

IntroducƟon to microcontrollers

Microcontrollers are Ɵny devices used to control other electronic devices. They are found in a huge
range of products. In automoƟve systems they can be found in engines, anƟ-lock brakes and
climate control systems. In domesƟc electronics they can be found in TVs, VCRs, digital cameras,
mobile phones, printers, microwave ovens, dishwashers and washing machines.

A microcontroller is a digital integrated circuit, consisƟng of a central processing unit, a memory,
input ports and output ports.

IntroducƟon to
Microcontrollers

SecƟon 1:

IntroducƟon to microcontrollers

At their heart (or is it brain?) there is a Central Processing Unit (CPU). This processes the digital signals, does
calculaƟons and logic operaƟons, creates Ɵme delays, sets up sequences of signals etc.

How does it know what to do? It is following a program of instrucƟons, stored in part of the memory, called the
'program memory', inside the PIC.

From Ɵme to Ɵme, the CPU needs to store data, and then later retrieve it. It uses a different area of memory, called
the 'data memory' to do this.

The clock synchronises the acƟviƟes of the CPU. It sends a stream of voltage pulses into the CPU that controls when
data is moved around the system and when the instrucƟons in the program are carried out. The faster the clock,
the quicker the microcontroller runs through the program. Typically, the clock will run at a frequency of 20MHz
(twenty million voltage pulses every second.)

To talk to the outside world, the microcontroller has 'ports' that input or output data in the form of binary
numbers. Each port has a number of connecƟons - oŌen referred to as 'bits'. An 8-bit port handles an 8-bit (or one
byte) number.

InformaƟon from sensors is fed into the system through the input port(s). The microcontroller processes this data
and uses it to control devices that are connected to the output port(s). The ports themselves are complex
electronic circuits - not simply a bunch of terminals to hang components on.

What is a microcontroller?

IntroducƟon to microcontrollers

Microcontrollers - PIC and AVR
The name PIC, (Peripheral Interface Controller), refers to a group
of microcontrollers, produced by Arizona Microchip.

When we use a PIC microcontroller, we have to specify how we
want the ports to behave. The ports are bi-direcƟonal, meaning
that they can act as either input ports or output ports. When we
write a program for the PIC, we start by configuring the ports,
telling them whether they are to behave as input ports or output
ports.

The input port can receive data (informaƟon) in one of two forms, as an analogue signal, or as a digital signal. It is
important that we understand clearly the difference between these.

The Digital World
Much of our everyday informaƟon is described in numerical format.

For example:

 "It is 2 o'clock."
 "The temperature outside is 21 degrees C."
 "The car was travelling at 48 kilometres per hour."

It is easy to understand data in this form.

For example, the table shows how the speed of a car changes over
a period of Ɵme.

However, you might wonder what happened at Ɵme 35 seconds.

Was the car moving faster or slower than 25 km/h at that moment?

The Analogue World
Now the informaƟon is given in the form of an analogy! In other words, we use something that behaves in a similar
way.

For example:

 1. The hour glass egg Ɵmer:

The greater the Ɵme elapsed, the deeper the sand in the boƩom of the egg Ɵmer.

2. The mercury-in-glass thermometer

The hoƩer it gets, the further the mercury moves up the tube.

3. The car speedometer

The higher the speed, the further the pointer moves around the dial.

The problem with analogue data is that you have to do some work to extract it.

For the speedometer, and thermometer, you have to work out where the pointer sits on the
scale. On the other hand, it is easy to judge how the temperature of a body or speed of a car is
changing - watch how quickly the mercury is moving along the tube or how fast the pointer
moves round the dial.

Time in seconds Speed in kilometres per hour

0 0

10 15

20 21

30 25

40 22

50 20

60 16

What is a microcontroller?

IntroducƟon to microcontrollers

Analogue Data

Many electronic sensors provide signals in analogue form. For example, a
microphone provides an electrical 'copy' of a sound wave.

Another - the temperature sensor!

Here is the circuit diagram for one type of temperature sensor.

The output voltage increases when the temperature increases.

It is an analogue signal because the voltage copies the behaviour

of the temperature.

An electrical analogue signal can have any voltage value,
limited only by the power supply used.

In this case, the output of the temperature sensor could, in
theory, go as high as 5V, or as low as 0V.

Over a period of Ɵme, the output voltage could change as
shown in the diagram. This is an analogue signal.

Digital Data

A digital signal carries its informaƟon in the form of a number. Electronic
systems usually employ the binary number system, which uses only the
numbers ‘0’ and ‘1’, coded as voltages. We could decide on the following code:
'0' = 0V, '1' = 5V, for example.

Digital signals, then, have only two possible voltage values, usually the power
supply voltage, or as close to it as the system can get, and 0V.

How can we enter these numbers into an electronic system?

One (very slow) way would be to use a switch (an example of a digital sensor.) The circuit diagram shows such a
digital sensor.

 When the switch is open (not pressed,) the output is 'pulled down' to 0V by the resistor. This output could
represent the binary number '0'.

 With the switch closed (pressed,) the output is connected to the posiƟve supply, 5V in this case.

This could represent the binary number '1'.

(Note - if the posiƟons of the switch and resistor were reversed, pressing the switch would put a

logic 0 signal on the pin etc.) The following diagram shows a more complex digital signal.

The nine bit binary number represented by the signal is given under the waveform.

Data representaƟon

IntroducƟon to microcontrollers

Much of our 'real world' data is analogue, but computers (including microcontrollers) can only process
digital data. Fortunately the microcontrollers oŌen contain a subsystem that can convert informaƟon
from analogue format to digital format. This is called an Analogue-to-Digital Converter - usually shortened
to 'ADC' or 'A/D'.

The ADC inside the a microcontroller divides the range of possible analogue voltages into equal steps.
The lowest step is given the number ‘0’, and the highest step is given the highest number that the A/D
converter can handle.

This highest number is determined by the resoluƟon of the ADC, which, in turn, depends on number of
'bits' the internal circuitry of the ADC can handle. The resoluƟon of PIC ADCs is 8, 10 or 12 bit.

For example, if the biggest analogue voltage is 5V, and the PIC has an 8-bit ADC:

the highest 8-bit number is 1111 1111 (= 255 in decimal);

the first step is 0000 0000 (= 0 in decimal) ;

meaning that there are 256 voltage levels;

 so stepping from one level to the next involves a voltage jump of 5V/256, or about 20mV.

When this microcontroller processes an analogue signal, it first divides it by 20mV, to find out how many
steps the signal includes. This gives the digital equivalent of the analogue signal.

The next graph illustrates this process.

In our example, the converter outputs '0000 0000' for any analogue signal up to 20mV, outputs '0000
0001' for analogue signals between 20 and 40mV, and so on. The analogue signal shown in the graph
produces an output of '0000 0011'.

Analogue to digital conversion

IntroducƟon to microcontrollers Inpuƫng data into a microcontroller

The PIC microcontroller is a digital
device, but data can be entered in
both analogue and digital forms.
Programmers choose whether pins
on the PIC are used as analogue
inputs, digital inputs or digital
outputs. This flexibility leads to
complex labelling.

The diagram shows the pinout for a
PIC 16F1937 chip. It has five ports,
known as A, B, C, D and E. The pins
on port A are labelled RA0 to RA7;
pins on port B are labelled RB0 to
RB7 etc. Ports A, B, C and D have
eight pins but port E has only four.

For example, up to eight digital
sensors can be connected to port A
of the 16F1937.

Pin 2 is marked as 'RA0/AN0',
meaning
that it can be used as bit 0 of port
A
(Register A bit 0) or as ANalogue input 0.

The funcƟon of each input / output pin is determined by seƫng the contents of internal registers, called
'data-direcƟon' registers inside the PIC device.

Pins RA6 and RA7 are also labelled as ‘OSC1’ and ‘OSC2’. They can be connected to an external oscillator
circuit or be used for digital input /output.

Analogue sensors must be aƩached to the pins labelled with an 'ANx' (ANalogue) label. These, found on
ports A, B and E, can handle analogue signals between VDD (5V) and VSS (Gnd).

Most pins have alternaƟve funcƟons. For example pin 25 is labelled as 'RC6/TX/CK', meaning that it can
be Register C bit 6, or the transmit (TX) pin of the internal serial interface, or the ClocK pin of the internal
serial interface.

Fortunately Flowcode takes care of the internal seƫngs that dictate pin funcƟonality for you.

Outpuƫng data

The microcontroller is a digital device - we have said that several Ɵmes already! It outputs a digital signal.
In most cases, we use this to turn something on and off - '0' = 'off' and '1' = '0n', for example.

Suppose that we set up port B as the output port, (or let Flowcode do it for us). There are eight pins on
port B, so we can switch eight devices on and off. It is important to plan how we connect these devices,
as otherwise they might work the opposite way round!

IntroducƟon to microcontrollers

The diagram shows eight LEDs connected to
port B of a PIC16F84 microcontroller:

The four red LEDs are connected between the
posiƟve supply rail and the port B pins

For these LEDs, PIC is 'sinking' current.

The four green LEDs are connected between the
pins and the 0V rail.

For these, PIC is 'sourcing' current.

Each red LED lights up when its pin is at a low
voltage, outpuƫng '0' in other words.
Each green LED lights when its pin is at a high voltage, outpuƫng a '1'.

(There are limits as to how much current the ports can control. Typically, one output pin can manage up
to 25mA. This is enough to drive LEDs and buzzers directly, but higher-powered devices will need
addiƟonal circuitry to interface with the PIC - dealt with later. However, the maximum current for the
whole port is around 100mA, so not all pins can output 25mA at the same Ɵme.)

Current Limits
As you have seen, Flowcode has a simulaƟon mode that allows you to aƩach LEDs to show the status of
the pins on the microcontroller when they are used as outputs. The LED simulaƟon funcƟon inside
Flowcode assumes that current is sourced from the PIC device - like the green LEDs in the diagram above.

At some stage, you will need to use the PIC pin specificaƟons in order to use them as digital inputs,
analogue inputs, or as digital outputs. In parƟcular, there are limitaƟons on the output capabiliƟes of the
device. Exceeding these limits, even for a short Ɵme, may cause permanent damage to the PIC.

Fortunately the E-block boards used on this
course all have current limiƟng resistors which
protect the PIC device. When using the
prototype or patch boards, however, there is no
such protecƟon and care must be taken not to
damage your device.

Storing Data

Electronic sub-systems that store data are known as 'memory'.
They can store only digital data.

One item of data is stored in one locaƟon in the memory. This
data could be the correct combinaƟon to disarm a burglar alarm,
or the target temperature of a car engine block.

Each memory locaƟon has a unique address, a number used to
idenƟfy the parƟcular locaƟon. This means that we can draw up a
map of the memory, showing what data is held in each locaƟon.

The decimal version of the address is included to make the table
easier to read.

Maximum current sunk/sourced by any I/O pin 25mA

Maximum current sunk by all ports 200mA

Maximum current sourced by all ports 140mA

Maximum current out of VSS (Gnd) pin 95mA

Maximum current into VDD (5V) pin 70mA

Address
Data stored

In decimal In binary

0 000 11101001

1 001 00100101

2 010 10000101

3 011 11001101

4 100 01110100

5 101 00011011

6 110 11110011

7 111 10000101

Outpuƫng data

IntroducƟon to microcontrollers

Electronic systems understand only binary numbers. This very small memory has eight locaƟons.
(NoƟce that numbering normally starts at ‘0’!) It needs a 3-bit binary number to create unique addresses
for each locaƟon. It allows us to store items of data that are eight bits long, (one 'byte' (1B).

Our example memory could be called a 8 x 1B memory. Memory systems used in computers are much
larger. Data is oŌen stored as 32 bit numbers, allowing the use of much larger numbers. There are many
more locaƟons, too. A typical computer memory now has millions of memory locaƟons!

Types of Memory

There are several types of electronic memory, each with a slightly different job to do.

We can divide them into two main groups, ROM and RAM,:

Read Only Memory (ROM)
These devices are normally only read (i.e. the contents are accessed but not changed ‘wriƩen’,) during the running
of a program.

 The contents are not volaƟle. (The data remains stored even when the power supply is switched off.)
 They are oŌen used to store the basic programs, known as 'operaƟng systems', needed by computers.
 The group includes:

 PROM (Programmable Read Only Memory),
 EPROM (Erasable Programmable Read Only Memory),
 EEPROM (Electrically Erasable Programmable Read Only Memory)

A PROM is a one-shot device, which arrives blank, ready to receive data. Data can then be 'burned' into it,
but only once. AŌer that it behaves like a ROM chip that can be read many Ɵmes but not altered.

With an EPROM, shining ultraviolet light through a window in the top of the chip erases the contents.
New data can then be 'burned' into the memory. Some older PIC devices operate in this way.

The EEPROM devices work in a similar way to an EPROM, except that the contents are erased by sending
in a special sequence of electrical signals to selected pins. 'Flash' memory is a form of EEPROM, widely
used as the storage medium in digital cameras, (the memory sƟck) and in home video games consoles.

Random Access Memory (RAM)

 RAM allows both read and write operaƟons during the running of a program.
 The contents are volaƟle and disappear as soon as the power supply is removed. (The excepƟon is NVRAM, Non

-VolaƟle RAM, where the memory device may include a baƩery to retain the contents, or may include an
EEPROM chip as part of the memory to store the contents during power loss.)

 They are oŌen used for the temporary storage of data or applicaƟon programs.

Memory types

IntroducƟon to microcontrollers

Microcontroller memory
PIC chips have three separate areas of memory:

 program memory (Flash);
 user variable memory (RAM);
 EEPROM.

The names give strong hints as to the purpose of the areas!

For the eighteen pin PIC16F84 the graphic illustrates the
organisaƟon of the memory:

Program memory is used to store the program!

In most PICs, such as the 16F1937, this uses 'Flash' technology,
meaning that it can be programmed and cleared many Ɵmes.
Older PIC's use PROM for the program memory so that many of
these can be programmed only once.

Data memory is used to store data!

Part of this uses RAM and part uses EEPROM.

The EEPROM allows us to preserve important data even if the
power supply to the system is switched off.

For example, suppose that the PIC is part of a temperature
controller that keeps an incubator at a set temperature. It might make sense to store the target temperature value
in EEPROM so that we do not have to enter it into the system every Ɵme we switch the incubator on.

Programming
Microcontrollers are programmable devices. They do exactly what they are told to do by the program, and nothing
else! A program is a list of instrucƟons, along with any data needed to carry them out.

The only thing microcontrollers understand is numbers. There's a problem! We don't speak in numbers, and they
don't understand English!

There are two soluƟons, and both need some form of translator:

 Write the program in english, or something close to it, and then have the result translated into numbers.
 We can think through the program design in English and then translate it ourselves into a language that is

similar to numbers, known as 'assembler'. From there, it is a swiŌ and simple step to convert into the numerical
code that the microcontroller understands.

These two extremes are known as programming in a high-level language (something close to English) or in a low-
level language (assembler).

The first is usually quicker and easier for the programmer, but takes longer to run the program, because of the
need to translate it for the microcontroller.

The second is much slower for the programmer, but ends up running very quickly on the microcontroller.

If you think that this sounds very complicated, you are right. It is! Fortunately, Flowcode works using flowcharts -
the easiest, and highest level, of programming and then takes care of all translaƟon needed.

Memory types

IntroducƟon to microcontrollers

The Flowcode process
'Flowcode offers an easy way to program microcontroller chips, as you will see. Once the flowchart is
designed on-screen, one press of a buƩon causes the soŌware to translate it into numerical code!

 Flowcode passes the program through a number of processes before it gets sent into the
microcontroller. The flowchart is processed:
 first into C code,
 then into Assembler,
 and finally into hexadecimal numbers or 'Hex', which the microcontroller 'understands'.

The Hex code is then sent into the microcontroller, using a subsidiary program called 'Mloader'.
When you select Build > Project OpƟons... Configure from the Flowcode menu, the program 'Mloader'
runs. It controls a number of opƟons and configuraƟons by seƫng the value of registers inside the device
when you download a program.

The Hex code is 'burned' into the microcontroller program memory. Since Flash memory is used to form
the program memory, the program is not lost when the microcontroller is removed from the
programmer. This allows you to use it in a circuit. Equally, use of Flash memory means that you can reuse
the microcontroller and overwrite the program memory with a new program.
Running the Program

As soon as the microcontroller is powered up and is supplied with clock pulses, it will start to run
whatever program is stored in program memory (Flash).

When you press the reset buƩon on the microcontroller programming board, the program restarts from
the beginning.

During programming the microcontroller stops while the program is being loaded. When that is
completed, it then restarts and runs the downloaded program.

The Flowcode process

IntroducƟon to microcontrollers

 Different types of microcontroller
There are a large number of microcontroller devices available, from the humble 16F84 to larger more complex
microcontrollers, such as the 40 pin 16F1937. Different microcontrollers have different number of ports, or I/O
pins, analogue inputs, larger memory, or advanced serial communicaƟons capabiliƟes such as RS232 or SPI bus.

Deciding on which device to use for a project can be a task in itself. For this course we use a 16F1877 device, a 40
pin PIC that has many internal subsystems (like an A/D converter, and a serial port).

PIC16F1877 Architecture

As this course uses the PIC16F18877 PIC, it is
important that you understand a liƩle more about
what it does and how to use it. This secƟon details
the pins that are available on the 16F1877 and the
connectors they use on the programmer board.
(The secƟon on 'Using E-blocks' looks at how these
connecƟons are made).

At this point in a tradiƟonal programming course,
you would be introduced in some detail to the
various internal circuit blocks of the PIC device. You
would need this informaƟon to write code for the
PIC in C or assembly code. No need - Flowcode
takes care of these details!

 However, you do need to understand the input and output connecƟons of the PIC, the memory available and the
role of the other subsystems in the PIC.

Ports - The PIC16F18877 PIC has five ports, labelled ‘A’ to ‘E’, connected to the rest of the microcontroller internals
by an 8-bit bus system.

The PIC16F877

IntroducƟon to microcontrollers The PIC16F18877

The PIC16F877 pin out:

Other subsystems in the PIC16F18877:

Memory:

Flash
 Flash memory is used to store the program you write.
 This program is 'compiled' by the computer to binary code and then downloaded into the Flash memory of the

PIC.
 You can read from, and write to it and it is retained, even aŌer a power cut.

 The Flash memory contained in the 16F18877 can store up to 32768 program commands.

RAM
 Data from inputs, outputs, analogue inputs, calculaƟons etc. is typically stored in ‘variables’ (values in the

program that alter as it runs). RAM is where these are stored.
 This memory is erased every Ɵme the power gets cut or a reset occurs.
 It also contains system 'registers' which control and report the status of the device.

 The RAM memory in the 16F18877 can store up to 4096 bytes of data.

EEPROM
 EEPROM is where data can be permanently stored
 This memory is of the PROM-type - preserved every Ɵme the power cuts or a reset occurs.

 The EEPROM of the 16F18877 can store up to 256 bytes of data.

IntroducƟon to microcontrollers

ALU:

 The ALU (ArithmeƟc Logic Unit) is at the heart of the PIC’s data processing.
 All data passes through this unit.
 The program in the Flash memory tells the ALU what to do.
 The ALU can send data to, and fetch data from all the separate blocks and ports in the PIC using the 8-bit wide

data-bus.
 The ALU needs four external oscillator clock pulses to execute one whole instrucƟon.
 How the ALU works is very complicated. Fortunately Flowcode programmers do not need to know how it

works.

Timer 1 (TMR1):

 This Ɵmer interrupt is used to provide the microcontroller with exact Ɵming informaƟon.
 It is ‘clocked’ either by the system clock or by an external clock on pin RC0.
 Either clock can be divided by 1, 2, 4 or 8 by configuring the Prescaler of TMR1 in Flowcode. The resulƟng

output triggers TMR1 and increments the TMR1 register.
 TMR1 is a 16-bit register, which ‘overflows’ when it reaches ‘65536’.
 At the instant it overflows, it generates an interrupt and the TMR1 register is reset to ‘0’.
 This TMR1 Interrupt stops the main program immediately and makes it jump to the TMR1 macro.
 AŌer this finishes, the main program conƟnues from where it leŌ off just before the interrupt.

For example:

Result: TMR1 interrupts the main program and execute the TMR1 macro 9.375 Ɵmes per second.

Timer 0 (TMR0):
 This Ɵmer interrupt also provides the microcontroller with exact Ɵming informaƟon.
 It is ‘clocked’ either by the system clock or by an external clock on pin RA4.
 This system clock runs exactly four Ɵmes slower than the external oscillator clock.
 Either clock can be divided by 1, 2, 4 or 8, 16, 32, 64, 128, or 256 by configuring the Prescaler of TMR0 in

Flowcode. The result triggers TMR0 and increment the TMR0 register.
 This TMR0 register is an 8-bit register, which overflows when it reaches 256.
 At the instant it overflows, it generates an interrupt and the TMR0 register is reset to 0.
 A TMR0 Interrupt stops the main program immediately and makes it jump to the TMR0 macro.

AŌer this finishes, the main program conƟnues from where it leŌ off just before the interrupt.

For example:

Result: TMR0 interrupts the main program and execute the TMR0 macro 75 Ɵmes per second.

The PIC16F18877

External clock oscillator frequency (crystal oscillator) 19 660 800 Hz

System Clock (four clock pulses per instrucƟon) 4 915 200 Hz

Set prescaler to ‘8’ (divides by 8) 614 400 Hz

Overflow frequency when TMR1 = ‘65536’ 9.375 Hz

External clock oscillator frequency (crystal oscillator) 19 660 800 Hz

System Clock (4 clock pulses per instrucƟon) 4 915 200 Hz

Set prescaler to 256 (divides by 256) 19 200 Hz

Overflow when TMR0 = 256 75 Hz

IntroducƟon to microcontrollers

RBO External Interrupt:

 A logic level change on pin RB0 can be configured to generate an interrupt.
 It can be configured in Flowcode to react to a rising or to a falling edge on RB0.
 If set to react to a rising edge, when one occurs:

 it immediately stops the main program;
 the RB0 related macro is executed;
 then the main program conƟnues from where it leŌ off just before the interrupt.

This happens every Ɵme a rising edge is detected at pin RB0.

PORT B External Interrupt:

 A logic level change on any combinaƟon of pins on port B can generate an interrupt.
 This can be configured to occur on a rising or a falling edge, or both.
 When one of these interrupts occurs:

 it immediately stops the main program;
 the port B related macro is executed;
 then the main program conƟnues from where it leŌ off just before the interrupt.

This happens every Ɵme a level change is detected on one of the pins selected on port B.

A/D:

 The 16F18877 has fourteen pins that have an extra A/D funcƟon.
 It has only one 10-bit A/D converter.
 This implies that these fourteen analogue inputs can't all be read at the same Ɵme.
 A built-in analogue switch, configured in Flowcode, selects which inputs are sampled.
 AŌer the 'sample' instrucƟon, the analogue switch points to the correct input and this is converted into a 10-bit

binary value.
 In Flowcode, you can opt to use only the eight most-significant bits (MSB's) of this 10-bit value, by using the

'GetByte' instrucƟon, or to use the full ten bits by using the 'GetInt' instrucƟon. The ten bits will fill up the ten
least-significant bits (LSB's) of the selected 16-bit integer variable.

 AŌer this, the program can select to read another analogue input.

Busses:

 PIC and AVR (Arduino) microcontroller uses Harvard architecture.
 This means that there are separate busses for instrucƟons and for data.
 The data bus is 8-bits wide and connects every block and port together.
 The instrucƟon bus is 14-bits wide and transports instrucƟons, which are 14-bits long, from the program

memory to the ALU.

IntroducƟon to ‘clocks’

Every microcontroller needs a clock signal to operate. Internally, the clock signal controls the speed of
operaƟon and synchronises the operaƟon of the various internal hardware blocks.

In general, microcontrollers can be ‘clocked’ in several ways, using:
 an external crystal oscillator;
 ‘RC’ mode, where the clock frequency depends on an external resistor and capacitor;
 an internal oscillator.

The ‘RC’ mode exists partly historical and partly for reasons of economics. It was introduced as a low cost
alternaƟve to a crystal oscillator. It is fine for applicaƟons that are not Ɵming criƟcal, but is not covered in
this course.

The PIC16F18877

IntroducƟon to microcontrollers

E-blocks are small circuit boards that can easily connect together to form an electronic system.
There are two kinds of E-Blocks. Upstream boards and Downstream boards.

A variety of boards can be combined to create a full system with downstream boards connected to
upstream boards.

E-blocks are ideal companions to Flowcode soŌware, allowing users to test and develop their
Flowcode programs. Programs can be compiled directly to the boards, providing ideal development
environments.

Using

E-blocks

SecƟon 2:

Using E-blocks

IntroducƟon to microcontrollers

E-blocks consist of upstream boards and downstream boards.

Upstream boards
'Upstream' is a compuƟng term indicaƟng a board that controls the flow of informaƟon in a system. They
are usually programmed in some way.

Any device which contains 'intelligence' and can dictate the direcƟon of flow of informaƟon on the bus
can be thought of as an 'upstream' device.

Examples include microcontroller boards, and Programmable Logic Device boards.

Downstream boards

‘Downstream’ boards are controlled by an ‘upstream’ board, but informaƟon can flow into or out of
them. Examples include LED boards, LCD boards, RS232 boards etc.

Upstream and downstream boards combined to form a full system, with the downstream boards plugging
into the upstream ‘intelligent’ boards:

Using E-blocks

IntroducƟon to microcontrollers

BL0011 PIC Programmer
 The board has five ports, labelled A to E.
 Ports ‘B’, ‘C’ and ‘D’ offer full 8-bit funcƟonality.
 Port ‘A’ has 6-bit funcƟonality (8-bit if the internal oscillator is selected).
 Port ‘E’ has 3-bit funcƟonality.
 It can be powered from an external power supply, delivering 7.5V to 9V or from a USB supply.
 If the Reset switch is pressed, the program stored in the microcontroller will restart.
 The board is USB programmable via a programming chip. This takes care of communicaƟon between

Flowcode and the microcontroller.
 The microcontroller executes one instrucƟon for every four clock pulses it receives.
 (Note - a single instrucƟon is NOT the same as a single Flowcode symbol, which is compiled into C and

then into Assembly and probably results in a number of instrucƟons).
 This course uses an 8MHz crystal which is mulƟplied up to 32Mhz internally.
 Switches allow the user to select a number of opƟons.
 External power supply or USB power supply.
 Where the microcontroller uses an internal oscillator, all eight bits of port A can be used for I/O

operaƟon

 Use of a PICKit3 tool from Microchip via ICSP header.
 Comes with a surface mounted PIC16F18877 device.
 Provides power to the downstream E-blocks boards via the port connectors.
 Contains the Matrix Ghost chip which allows for real Ɵme in-circuit debugging when combined with

Flowcode.

For Arduino programmer overview please refer to Appendix 1, SECTION A (page 89).

Using E-blocks

IntroducƟon to microcontrollers

BL0114 Combo Board
The board combines together on one compact board the funcƟonality found on a number of individual E-blocks
boards:

 BL0167 LED board (x2)
 BL0169 LCD board
 BL0145 Switch board (x2)

For this course, the port connectors aƩach to female connectors on ports A and B of the upstream board.

The board provides a set of eight switches and eight LEDs for port A and the same for port B.

With the main switch in the DIG posiƟon, port A is routed to its push switches (SA0 to SA7), to LEDs (LA0 to LA7)
and to the quad 7-segment display.

With the main switch in the ANA posiƟon, port A is switched to the analogue sensor secƟon of the board, so that
pin RA0 is connected to the on-board light sensor and pin RA1 is connected to the potenƟometer to give a variable
output voltage, (simulaƟng the acƟon of an analogue sensing subsystem).

Note: With the switch in the ANA posiƟon, the on-board switches and LEDs LA0 and LA1 will not operate.

Port B I/O pins are routed to its push switches (SB0 to SB7), to the LEDs (LB0 to LB7), to the quad 7-segment
displays and to the LCD display.

The quad 7-segment display is turned on by switch ‘7SEG’. It is connected to both port A and B.

 Port B is used to control the LED segments and the decimal point).
 Port A, bits 0 to 3, select which display is acƟvated.

The LCD is a 20 character x 4 lines module, turned on by switch ‘LCD’. Normally a complex device to program,
Flowcode takes care of the complexiƟes, unseen by the user.

Using E-blocks

IntroducƟon to microcontrollers

ConnecƟng E-blocks together
E-blocks2 are built on a bus-based concept. Each E-block connects together
with a 16 pin Har-flex connector, with the female ports aƩached to the
’intelligent’ upstream boards and the male
connectors aƩached to downstream boards.

The diagram shows that the first three pins are
used to transfer the power to the downstream
board, pins 4,15 and 16 are reserved.

Pins 5 and 6 are connected to ground while pins 7
-14 are the pins which transfer our 8 bits worth of
data between the boards.

Using E-blocks on the bench
You do not need a backplane to use E-blocks - you can simply connect
them together on the bench. In each E-blocks package you will find a
four small rubber feet to facilitate this. These provide a degree of
protecƟon for the E blocks boards and help prevent short-circuits from
Ɵnned copper wire and other metal objects on the bench. The
disadvantage is that your E-blocks system is less portable as the
connectors will be under more stress as the system is moved about.

ProtecƟng E-blocks circuitry
Where possible, leaded components have been used for devices on E-
blocks boards that are suscepƟble to electrical damage. This makes the
task of replacing them simple should they be damaged.

To protect ‘upstream’ components, all ‘downstream’ E-blocks boards include protecƟve resistors. Should errors
occur when declaring the nature of port pins, e.g. an input declared as an output, no damage will be caused.

However there are circumstances where it is possible to cause damage:

 Care is needed when using screw terminal connectors and patch/prototype boards.
 Where possible, use protecƟve resistors for the lines you need to connect when connecƟng two ‘upstream’

boards together with a gender changer E-block.
 Make sure you are earthed before handling E-blocks circuit boards to minimise the risk of staƟc damage. If you

have not got an anƟstaƟc wrist band, then touch a radiator or other earthed metal object.

Before making any changes to the E-blocks system, turn off the power supply.

Using E-blocks

IntroducƟon to microcontrollers

Flowcode Embedded allows you to create microcontroller applicaƟons by dragging and dropping
icons on to a flowchart to create programs. These can control external devices aƩached to the
microcontroller such as LEDs, LCD displays etc.

Once the flowchart has been designed, its behaviour can be simulated in Flowcode before the flowchart is
compiled, assembled and transferred to a microcontroller.

IntroducƟon to

Flowcode
Embedded

SecƟon 3:

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

This secƟon allows those who are new to Flowcode to understand how it can be used to develop
programs. It allows you to enter programs step-by-step to learn about how Flowcode works.

We advise that you work through every secƟon to familiarise you with all of the opƟons and features of
Flowcode and introduce you to a range of programming techniques. As you work through each part,
please also refer to the Flowcode help file. The main Flowcode icons are introduced in turn.

Specifically in this secƟon you will learn:
 how to use each Flowcode icon (except the C code icon);
 how the fundamental Components in Flowcode work - the LED, LCD, ADC, switch, 7-segment display, 7-segment

quad display, keypad and EEPROM components.

What is Flowcode Embedded?

Flowcode Embedded allows you to create microcontroller applicaƟons by dragging and dropping icons on
to a flowchart to create programs. These can control external devices aƩached to the microcontroller
such as LED's, LCD displays etc.

Once the flowchart has been designed, its behaviour can be simulated in Flowcode before the flowchart is
compiled, assembled and transferred to a microcontroller.

The process:

1. Create a new flowchart, specifying the microcontroller that you wish to target.

2. Drag and drop icons from the toolbar onto the flowchart to program the applicaƟon.

3. Add external devices by clicking on the buƩons in the components toolbar.

4. Edit their properƟes, including how they are connected to the microcontroller, and configure any macros
they use.

5. Run the simulaƟon to check that the applicaƟon behaves as expected.

6. Transfer the applicaƟon to the microcontroller by compiling the flowchart to C, then to assembler code and
finally to object code.

Flowcode Embedded overview
The Flowcode environment consists of:

 a main work area in which the flowchart windows are displayed.
 a number of toolbars that allow icons and components to be added to the flowchart.
 the System and Dashboard panels that display the aƩached components and provide basic
 drawing capabiliƟes.
 the Project Explorer panel that shows project variables, macros and component macros.
 the Icon List panel that shows bookmarks, breakpoints and search results.
 windows that allow the status of the microcontroller to be viewed.
 windows that display variables and macro calls when the flowchart is being simulated.

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

Command Icons

Drag-and-drop icons from this window onto the main flowchart window to create the
flowchart applicaƟon. AlternaƟvely the icons are available in the Command Icons toolbar.
This is the first tab of the Project Explorer, here docked leŌ, but it can be undocked.

Components libraries toolbar
Connect external components to the microcontroller or use basic panel drawing commands.
Components are grouped in different categories that appear as drop down menus. Click on a
component and it will be added to the microcontroller and appear on the panel. The pin connecƟons
and properƟes of the component can then be edited.

IntroducƟon to Flowcode Embedded

A typical screen (tesƟng the 7 segment display)

IntroducƟon to microcontrollers

2D: Dashboard & 3D: System Panels
The components that you connect to the microcontroller will be
displayed on one of these panels where The components that you
connect to the microcontroller will be displayed on one of these panels
where

They also provide basic drawing features like lines, shapes, and images,
which can like lines, shapes, and images, which can looking panels.

The Dashboard Panel is primarily for 2D use although offers a 3D view.
It is generally used as an interface where buƩons and switches of interacƟve
components are kept.

The System Panel is the main 3D panel, offering many more features and
opƟons:

 full camera control;
 editable background environments with default 'Sky Dome' and 'World

Dome' views;
 the opƟon to use an image as the background;
 'Shadow mode' offering both 'Tabletop' and 'Object' shadow opƟons.

More details on these panels are found in the 'Flowcode - Geƫng Started
Guide’. (View > 3D: System Panel) / (View > 2D: Dashboard Panel)

Component properƟes panel

All items on the panel, including the panel itself, have associated properƟes
that are displayed in the properƟes pane when the item is selected.

Some are read-only while others can be manipulated.

Some, like size and posiƟon, change as you interact with the item.

Others allow access to more advanced features of the selected item.

The properƟes pane typically docks to the right hand side of the screen but
looks like this when undocked: (View > Component ProperƟes)

Project Explorer

The buƩons along the top of this panel allow you to select ‘Ports’, ‘Globals’,
‘Macros’ and ‘Components’.

The 'Ports' view shows variable names assigned to the microcontroller ports.

The 'Globals' view shows any constants and variables that have been defined
for use in the current project.

The 'Macros' view shows user-created macros in the current program and
allows the user to drag them into the current flowchart.

The 'Components' view is very similar except that it also lists components that
are present in the panel. (View > Project Explorer)

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

Target device window
The pinout for the currently selected microcontroller chip is
displayed.

When the flowchart is being simulated, the state of the microcontroller I/O
ports are shown on the microcontroller as red and blue, for high and low
outputs respecƟvely.

 (View > Target Device)

Docking and undocking the toolbars and panes
Toolbars and panes can be undocked from their default posiƟons and either be leŌ free floaƟng, or docked to the
top, boƩom or the sides of the Flowcode window.

An example showing floaƟng toolbars:

To undock a docked toolbar, simply click and hold on the toolbar 'grab bars' (the top of the toolbar). Drag the

toolbar to its new posiƟon. To dock it again, double-click on the grab bar.

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

Flowchart window
The icons that make up the flowchart are displayed in this main space.
The text will change depending on properƟes selected,
component macros called etc, The display names can be
changed by the user to aid project organisaƟon.

A red star alongside an icon indicates that the flowchart has
not been saved in its current form.

SimulaƟon
When simulaƟng a program in Flowcode a red
rectangle around an icon indicates the icon to be
executed next.

SimulaƟon Debugger
When simulaƟng a flowchart, the
current values of any variables used in
the program can be seen in this
window. These are updated aŌer a
command is simulated unless the
simulaƟon is running at full speed - ('As
fast as possible').

If you simulate a flowchart and then press the pause buƩon, you can click on variables in this window to change
their value. This allows you to test your flowchart under known condiƟons.

The window also shows the current macro being simulated under the 'Macro Calls' secƟon, useful when one macro
calls another during the simulaƟon process.

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

StarƟng a new flowchart
 Create a new flowchart by selecƟng File > New Project.
 Select the microcontroller that you wish to target from the list

presented.

 Click the “New Embedded Project” buƩon

Opening an exisƟng project
There are a number of ways of opening an exisƟng Flowcode project:

 Select the Open opƟon from the File menu (File > Open Project)

or

 Select the file from the list of most recently used files in the File menu.

or

 Double-click on a Flowcode (.fcfx) file in Windows Explorer to launch Flowcode and open the file.

Saving a Flowchart
To save a flowchart, select either the ‘Save’ or ‘Save As’ opƟons from the File menu (File > Save / Save As).

Flowcharts must be saved before they can be compiled to C or transferred to a microcontroller.

Saving Flowchart Images
To save an image of the currently acƟve flowchart, select 'Save current Flowchart...' from the 'Save Image' sub-
menu in the 'File' menu (File > Save Image > Save current Flowchart...).

This funcƟon saves an image of the program to any file in the format chosen from the list:

 Bitmap (*.bmp);
 JPEG (*.jpg;*.jpeg);
 GIF (*.gif);
 PNG (*.png).

Note that the current zoom rate is used to determine the resoluƟon of the image saved. If you need high quality
images for prinƟng then increase the zoom rate.

From the 'Save Image' menu, you also have the opƟon to save the current image of either the 'Dashboard Panel' or
the 'System Panel' (File > Export > Save Dashboard image... / Save System image...).

These images can be saved to any file format chosen from the list:

 Model (*.mesh)
 Bitmap (*.bmp)
 JPEG (*.jpg;*.jpeg)
 GIF (*.gif)
 PNG (*.png)Model (*.mesh)

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

The View menu
This dictates which panels and toolbars appear on the workspace, a useful feature when trying to simplify
its appearance.
It also has a Zoom menu, which allows you to display more icons in the workspace window than when
using the default zoom seƫng.

The current zoom seƫng is displayed on the Zoom sub menu, and on the right hand side of the status bar, at the
boƩom of the Flowcode window.

The size of each icon is dictated by the zoom level - for larger icons, zoom in - for smaller icons, zoom out.
Use the Print Preview funcƟon to opƟmise the appearance of your flowchart on the paper.

The Zoom menu can also be accessed by right-clicking on the flowchart workspace.

FuncƟon key shortcuts:
 Increase Zoom (F3) - increases zoom size by 5%;
 Decrease zoom (F2) - decreases zoom size by 5%;
 Default zoom (F4) - set zoom to 75%;
 Zoom to fit - Zooms to fit the whole flowchart into the current window;
 Zoom to fit width - Zooms to fit the width of the flowchart into the width of the window.

Global Seƫngs
The View menu also includes a Global Seƫngs for configuraƟon of applicaƟon and flowchart

 (View > Global Seƫngs) Then select the appropriate Tab.

ApplicaƟon Tab
his tab enable seƫng of general applicaƟon
seƫngs, such as language, document
appearance, autosave
feature, code generaƟon opƟons and web
access.

The OpenGL graphics engine can here be set as
hardware or soŌware mode.

The Override language opƟon allows the user
to override the default Flowcode language
seƫngs and to display Flowcode in a specified
language. To do this, select the language from
those available on the drop down list and
restart Flowcode. It will do so in the selected
language, provided the relevant language pack
has been installed.

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

Flowchart Tab

This tab enable seƫng of flowchart display
styles, text size and font.
AnnotaƟon and toolƟp style customizaƟons.

Scheme Tab

This tab contains the seƫngs for changing the
appearance of the flowchart, including icon
colours and graphics, background colours and
paƩerns etc.

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

LocaƟons Tab

This tab enables the seƫng of backup
filenames and the locaƟon of toolchain
directories.

AddiƟonal directories can be added for the
locaƟon of custom components.

View Windows (SimulaƟon)

Analog Inputs and Digital Pins

Analog input values can be set
and Digital pins monitored and set
via the windows enabled from
View > Analog Inputs
and
View > Digital Pins

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

Geƫng Help with Flowcode

Flowcode has within it and online an extensive wiki which can be accessed through the Help toolbar
menu or via an internet browser and visiƟng this page:

hƩp://www.flowcode.co.uk/wiki/

AddiƟonally every single component within Flowcode has a page on the wiki which explains all the
macros within it, and usually includes some examples as well.

To access the component help simply right-click your mouse on any component in either the 2D or 3D
panel and select Help.

From here you can see:

 ExplanaƟon of the component
 Some examples of the component in use
 Macro references explaining what each macro plus the parameters and return values.

Library Updates

Flowcode components and target device informaƟon is keep up to date via an online system accessed
from the Help menu (Help > Library Updates)

IntroducƟon to Flowcode Embedded

IntroducƟon to microcontrollers

Adding digital outputs - Light the LED
Create a program that lights an LED aƩached to the microcontroller.
This program introduces the topic of how to control a digital output.

The tutorial provides a clear, step by step approach enabling you to create your first program using
Flowcode. It can be run in Flowcode’s simulaƟon mode before compiling to the board for tesƟng
and development.

Note: This tutorial refers to the port seƫngs (ports A and B) as used with PIC.

For Arduino users, please use ports C and D as appropriate.
(Port C on the Arduino ’Maps’ to Port A of the Combo board).

Flowcode

First Program

SecƟon 4:

Set-up using E-Blocks 2.

IntroducƟon to microcontrollers

StarƟng a new project

Select 'New Project’ at the welcome screen, or via the menu (File > New Project)
On the “Embedded” tab choose a target device or development board.

You will noƟce that the selecƟon list includes details of the features and peripherals of each target.
This is useful when selecƟng a device for a parƟcular project.

For our new project, if we are using for example the MatrixTSL E-blocks2 PIC development board,
choose the BL0011 target from the “Free targets” list.

For Arduino users, please select an appropriate Arduino development board.

In this case the target choice also selects the correct 16F18877 device
and presets the correct values for clock oscillator frequency and other seƫngs.

Click on the “New <BL0011> Embedded Project” buƩon to start the project.

TIP: The project target device can be changed later via the menu (Build > Project OpƟons)

IntroducƟon to microcontrollers Flowcode first program

Add an LED Array (PCB) to the 3D system panel.

The LED array can be found under Outputs in
the Component Libraries Toolbar.

(Component Libraries > Outputs >

LED Array (PCB) > Add to 3D system panel)

Create a Flowchart.

Move the cursor over the Loop icon, in the Icon
toolbar. Click and drag it over to the work area.
While dragging it, the normal cursor changes into a
small icon. Move it in between the 'BEGIN' and
'END' icons. As you do so, an arrow appears
showing you where the Loop icon will be placed.
Release the mouse buƩon to drop the icon in
between the 'BEGIN' and 'END' boxes.

Add an Output icon within the
loop on the flowchart in the same
way.

TIP: The colours of the icons on
your system my be different.

IntroducƟon to microcontrollers

Changing port seƫngs
Double click on the Output
icon that you’ve put in your
flowchart and the ProperƟes
box will come up.

Select Port B.
Input a value of 1.

(You have done this because
the LEDs in your 3D system
panel are currently aƩached
to port B, so we are sending
the Output to the same port).
 Run the simulaƟon.

Select the Go icon from the Debug menu bar and the simulaƟon of
the LED will light up in the 3D system panel.

SimulaƟon mode.

Go (F5)

Stop (ShiŌ+F5)

TIP: Remember to stop your simulaƟon before doing anything else. (If Flowcode isn’t
doing as you expect, check that you haven’t accidentally leŌ your simulaƟon running).

Flowcode first program

IntroducƟon to microcontrollers

Save your program (File > Save)

Connect your target development board to a
power supply.
Connect the USB programming lead to your PC.

Click the Compile to Target from the Build menu
as shown: (Build > Compile to target)

Changes to try aŌer successfully lighƟng your LED.
Highlight the image of the LED array in the 3D system panel and right click to select
the ProperƟes. Here you can change the number of LEDs in your array by changing
the value under count. Try changing the colour of the LEDs in the simulaƟon as
shown below.

6 red LEDS in simulaƟon.

Property seƫngs for 6 red LEDS.

Flowcode first program

IntroducƟon to microcontrollers

Changing the port seƫngs.
Bring up the Output icon properƟes (double click) and change the Port seƫngs to Port A.
Highlight the image of the LED array in the 3D system panel and right click to select the ProperƟes,
and change the Port seƫngs to Port A.

Run in simulaƟon
mode and then
compile to chip.
You should see
the first LED of
the other row
light up.

Upper row LEDs

You can pracƟse changing the ports by changing them back to port B. Change the value from 1 to 255.
Test in simulaƟon mode and then compile to chip (all 8 LEDs light up). Experiment using other values.
(TIP: See Number Systems Worksheet).

Flowcode first program

IntroducƟon to microcontrollers

Decimal Same in binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

BINARY VALUE

16 8 4 2 1

Binary Numbers
Digital electronic devices can't cope with decimal numbers (0, 1, 2, ..9
etc.). Instead, they use the binary system, which uses only two numbers
0 and 1. The number 1 could be represented by a high voltage signal,
while number 0 could be a low voltage.

The table opposite shows how the two number systems compare:

The decimal system uses ten numbers, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. On
reaching the last of these, ‘9’, we start again with '0', but add another
number in front. For example, aŌer '8' and '9' comes '10', and aŌer '18'
and '19' comes '20' and so on. When we reach '99', both of these go
back to '0''s but with a '1' in front, to make '100'.

In binary, the same thing happens, but a lot more oŌen, because it uses only
'0''s and '1''s. CounƟng up starts with '0', then '1', then back to '0' with a '1' in
front, making '10' (not ten - it's two!) Next comes '11' (three) and start again
with two '0's but with a '1' in front, to give '100' (four) and so on.

NoƟce that each Ɵme the binary '1' moves one place to the leŌ, it doubles in value of the number in
decimal, as the second table shows. We can use this idea to convert between number systems.

TIP: In any binary number, the bit at the leŌ-hand end, the Most Significant Bit (MSB), has the
highest value. The one at the right-hand end, the Least Significant Bit (LSB), is worth least

Hex numbers
Hexadecimal, 'hex' for short, is a more convenient form than binary (for humans) for represenƟng
numbers.

 A binary digit is either 0 or 1.
 A decimal digit varies between 0 and 10.
 A hex digit has sixteen possible states.

Clearly sixteen states is a problem, as we have only the digits from 0 to 9. To get round this, we use the
leƩers A to F to provide the addiƟonal six digits required.

Working with the binary number with eight digits is a handy convenƟon as computers (and the
PIC MCU) store informaƟon in groups of eight bits.

A single memory cell inside a PIC device can store a number ranging from 0000 0000 and 1111 1111. In
decimal this range is 0 to 255. The equivalent in hex is 0 to FF.

TIP: You can enter a hex number into Flowcode by preceding it with '0x' in any of the dialogue
boxes.

Decimal Same in binary

1 1

2 10

4 100

8 1000

Flowcode first program

IntroducƟon to microcontrollers

Coding Constructs - Number Systems

A single memory cell inside a PIC device can
store a number ranging from 0000 0000 and
1111 1111. In decimal this range is 0 to 255.
The equivalent in hex is 0 to FF.

Tasks

Complete the table below by:
a. Shading in the LEDs that light, for the first three rows.
b. Working out what number produces the LED paƩerns shown in the last three rows.

Use Flowcode to:
a. Check your work from the table above using Flowcode.
b. Enter a hex number into Flowcode by preceding it with '0x' in any of the dialogue

boxes. Can you light the same LED paƩerns using Hex?

Flowcode first program

IntroducƟon to microcontrollers Flowcode examples

All of these examples can be tried out using either a PIC or an Arduino microcontroller.

Arduino users should familiarise themselves with Arduino Adjustments in Appendix 1, and adjust
any port seƫngs accordingly.

Flowcode

Examples

SecƟon 5:

IntroducƟon to microcontrollers

 Example 1: Adding digital inputs - Where's the fire?

The scenario!

A large building has a number of heat sensors in its fire alarm
system. When there is a fire, the fire brigade needs to know
where the fire is. In other words, they need to know which
heat sensor has triggered the alarm.

The system is controlled by a PIC device. There are five heat
sensors, connected as inputs to port A. Port B is set up as the
output port and connected to a set of five LEDs. If a heat
sensor detects a fire, the corresponding LED lights up.

Seƫng up the flowchart

Open Flowcode and create a new project suitable for
the board you are using.

Drag the Loop icon, the Input icon and the Output icon
into your Flowchart from

the icon toolbar to create a Flowchart as shown.

Set Input to port A and Output to port B.

Flowcode examples

For Arduino users, please use ports C and
D as appropriate.
(Port C on the Arduino ’Maps’ to Port A of the
Combo board).

IntroducƟon to microcontrollers Flowcode examples

CreaƟng the variables
Right-click on the input icon, and select 'ProperƟes' from the menu.
The Input ProperƟes dialogue box appears, shown opposite. This
allows us to add a 'variable'. But what is a variable?

A variable is a place where we can store informaƟon, in parƟcular,
informaƟon that changes as our program runs.

In this case, it is the number of the heat sensor that triggers the
alarm. It might be sensor 1 that goes off, or sensor 5…. .

We are going to use a variable called SENSOR to store the
informaƟon on which sensor has been triggered.

Click on the arrow next to the 'Variable:' box.

You will see the next dialogue box:

Now hover over the word 'Variables' and the arrow appears. Click on it and select
'Add new'.

Another dialogue box, shown opposite, appears, offering a large choice of variable
types. For now, accept the default type of 'Byte', a variable which can store numbers
from '0' to '255'.

Type the name "SENSOR" (without quotaƟon marks) as the name of
the new variable and click on the ‘OK’ buƩon. It now appears in the
list of variables that the flowchart can use.

Double-click on the name of the variable to use it, or alternaƟvely
click and drag the name into the variable box.

You now see the input 'ProperƟes' box again. NoƟce that you need
to tell the system which port you are going to use to input the data
the system needs. It is set to port A at the moment, and we are going
to leave it that way.

In this case, the system needs to monitor the heat sensors and so
each sensor will be connected to a different bit of port A. Click on
‘OK’ to close the Input ProperƟes box.

IntroducƟon to microcontrollers

More on variables
In the previous secƟon you added a variable to the
program using the variable dialogue box:

Computer signals consist of streams of binary '0's and
'1's on each wire. A group of eight wires can carry eight
'bits', (binary digits,) simultaneously. This grouping of
eight bits, known as a 'byte' is used for much of the
internal wiring inside microcontrollers and for the
registers that hold and process data.

It is also used within memory subsystems. The contents
of a memory register having eight bits can vary from '0'
to '255'.

A variable inside Flowcodecan be configured to use just
one memory register or more than one.

Flowcode variables:
Flowcode offers eight different types of variables:

 a 'Bool' (Boolean) variable can either be '1' or
'0' (true or false);

 a single register, known as a 'Byte' variable, can
store numbers from '0' to '255';

 a double register, known as an 'Int' variable, can store numbers from '-32768' to '+32767';
 a double register can also be unsigned, when it is known as a 'UInt' variable, which can store numbers from '0'

to '65535';
 a quad register, known as a 'Long' variable, can store numbers from '-2147483648' to '2147483647';
 a quad register can also be unsigned, when it is known as a 'ULong' variable, which can store numbers from '0'

to '4294967295'.

TIP: Use a ‘Byte’ variable for simple counters and for variables that will not go above the value '255'. It is the most
economical in terms of memory space and also the fastest. MathemaƟcal processes involving two bytes (oŌen
referred to as '16 bit arithmeƟc') take longer to execute. A mulƟple register, known as a 'String' variable, can
consist of a number of ‘Byte’ variables - the default in Flowcode is 20.

Other variable issues:

FloaƟng point numbers, (that contain a decimal point somewhere in them,) can also be used, although they
represent a much wider range of values than an integer. They suffer a loss of accuracy over large ranges.

Finally an 'object handle' is used to reference a more complicated piece of data (such as a file, component or a
block of text) whose internal format is not known.

Why worry?:

The number of registers inside a microcontroller is limited, and in larger applicaƟons the number and types of
variables must be managed carefully to ensure that there are enough. On downloading a program, the variables in
Flowcode are implemented in the Random Access Memory (RAM) part of the PIC device. In the 16F1937 there are
512 Bytes of memory. This means you can have 512 ‘Byte’ variables, 265 ‘Int’ variables or 25 ‘Strings’ each
consisƟng of twenty ‘Bytes’ or characters.

Flowcode examples

IntroducƟon to microcontrollers

Seƫng up the outputs
 Next, right-click on the Output icon, and select 'ProperƟes' or

just double-click on it. The Output ProperƟes box appears.
 Click on the arrow, , next to the 'Variable:' box. You will see

the 'SENSOR' variable listed.
 Double-click on the word 'SENSOR' or click and drag it to the

'Variable:' box.
 The Output ProperƟes box now shows that the system is set to

output whatever data is stored in the 'SENSOR' variable. Change
the port used to port B, by clicking on the arrow, ,

 in the port window, and then clicking on 'PORTB' in the menu
that opens.

 Click on ‘OK’ to close the Output ProperƟes box.
 The flowchart should now look like this:
 NoƟce the arrows in the icon annotaƟons. They show that

informaƟon will flow from port A into the flowchart, via
‘SENSOR’, (Input icon) and from the flowchart, via ‘SENSOR’, out
to port B (Output icon).

Adding the LEDs
 Now click on the Outputs buƩon and select LED Array icon. 'Click-

and-drag' it onto the System Panel.
 Change the 'Count' property under the 'SimulaƟon' secƟon to the

value '5' by clicking on the box next to the 'Count' property and
using the keyboard to input the value.

 Click next to 'Port' under the 'ConnecƟons' secƟon to open an
interacƟve view of the chip, showing the compaƟble pins.

 Click on the drop-down menu and select the 'PORT B' opƟon. You have now connected the LEDs to the pins on
port B.

(For Arduino users, please use ports C and D as appropriate).

Adding the Switches
 You are going to use five switches to simulate the five heat sensors. The switch that is ‘on’ (closed) is the heat

sensor that has triggered the fire alarm.

 Click on the 'Inputs' buƩon and select the Switch Array. Drag it into a suitable spot on the System Panel.
 Click on the box next to the 'Count' property and change the value to '5'. Check that the component is

connected to 'PORTA'.

SimulaƟng the program
 Click once on the 'Step Into' buƩon. The 'SimulaƟon Debugger' window appears but ignore it for now.
 Move the cursor over one of the switches and click, to simulate detecƟng a fire. The switch graphic toggles to

the closed posiƟon. Click the ‘Step Into’ buƩon a few more Ɵmes to simulate the complete program.

The program is finished, and working. You have just detected a fire, which turned on a heat sensor. The LED array
tells you, or the fire brigade, which sensor detected the fire.

Flowcode examples

IntroducƟon to microcontrollers

Example 2 - Using loops
CounƟng sheep, badly at first, but without falling asleep!

The plan is straighƞorward - when a sheep passes through the gate, it breaks a light
beam. This sends a pulse to a counƟng system, which then adds one to the total stored
in the system.

We display this total on the LED Array.

The plan seems straighƞorward - but there will be problems!

(Note that Flowcode has a 'Beam Breaker' component, based on the 'Collision Detector'.
Although this would do a far beƩer job, for now we detect the light beam interrupƟon using more basic methods.)

Seƫng up the flowchart
Launch Flowcodeand start a new flowchart.

Create the flowchart shown opposite.

It contains a 'Loop' icon and a 'CalculaƟon' icon which you have not used
before.

It contains an Input icon and an Output icon.

(For Arduino users, please use ports C and D as appropriate).

CreaƟng the variables
We are going to create two variables, one called 'SHEEP' and the other
called 'TOTAL'.

 The 'SHEEP' variable will show whether a sheep is present or not.
 The variable 'TOTAL' will store the total number of sheep recorded so

far.
 Click 'View' on the menu bar, and ensure that 'Project Explorer' is

checked (View > Project Explorer).
 Click on the 'Globals' buƩon at the top of the Project Explorer panel:
 Hover over 'Variable:' in the project explorer panel and click ‘Add new'.

You now see the 'Create a New Variable' dialogue box. Type in the name
"SHEEP" and then click on ‘OK’. You can leave the variable type as 'Byte'
as there will not be that many sheep!

 Create a variable named "TOTAL" in the same way.

Flowcode examples

IntroducƟon to microcontrollers

Seƫng up the calculaƟon
 Double-click on the 'CalculaƟon' icon to

open the 'ProperƟes' dialogue box.
 Change the 'Display name' to "New total".
 Create the calculaƟon by typing the

following in the 'CalculaƟons' window:

 TOTAL = TOTAL + SHEEP

 We will simulate breaking the light beam
using a push switch marked 'SW0' on port A
bit 0.

 The 'Input' properƟes are set up to store
whatever number appears on port A in the
variable called 'SHEEP'. IniƟally, that number is '0'. When the switch is pressed, the number on port A and
stored in the variable 'SHEEP' is '1'. (With only one switch, the biggest number we can create on port A is 1.)

 When the 'CalculaƟon' icon is executed, the number stored in the variable 'SHEEP' is added to the 'TOTAL'
variable. Hence, when a sheep breaks the light beam, 'TOTAL' is increased by 1. With no sheep present, 'TOTAL'
remains unchanged.

 Click on the ‘OK’ buƩon, to close the dialogue box.

Configuring loop properƟes

 Double-click on the 'Loop' icon to open its 'ProperƟes'
dialogue box.

This shows the opƟons for controlling the loop. Next to the
'Loop while:' statement is the loop control text box, where
you write the loop condiƟon - the program conƟnues
looping unƟl this condiƟon is met.

Examples of loop condiƟons:

 count = 10 (Loop runs as long as the variable 'count' = 10)
 count > 4 (Loop runs as long as the 'count' is greater than 4)
 count = preset (Loop runs as long as the 'count' is the same as the variable ‘preset’)

In all of these, looping conƟnues as long as the condiƟon in the 'Loop while' text box is 'true'.

In programming 'true' has a special meaning. It is assigned a numerical value of ‘1’ so that a test can determine if
something is ‘true’. Similarly 'false' is assigned the numerical value '0'.

The default condiƟon in the 'Loop while:' text box is '1' - this condiƟon is always 'true' and so with this value, the
loop will run forever. Programs usually contain a ‘loop forever’ structure. If they do not, the program will end
suddenly and the computer will just sit there doing nothing.

When to test?
You can configure the properƟes to test the loop condiƟon either at the start of the loop or at the end.
Understanding this opƟon is important. It can affect the number of Ɵmes that the program will loop.

 Loop for a set number of Ɵmes
SomeƟmes, you just want to run a loop for a set number of iteraƟons. To do this, check the 'Loop count:' box and
enter the number of loops you want in the associated text box.

Flowcode examples

IntroducƟon to microcontrollers

Seƫng up the input
 Right-click on the 'Input' icon, and select 'ProperƟes' from

the menu, to see the following dialogue box:
 Change the display name. Double-click on 'Input' in the

'Display name:' box and type "Check the sensor".
 Click on the next to the 'Variable:' box to open the

'Variable Manager'.
 Double-click on the word 'SHEEP' to insert it into the

'Variable:' box.
 By default, the input is port A, which is what we want. Click

on ‘OK’ to close the dialogue box.

Seƫng up the output

 Double-click on the 'Output' icon to open the output 'ProperƟes' dialogue box.
 Click on the next to the 'Variable:' box.
 Double-click on the word 'TOTAL' to insert it into the 'Variable:' box.
 In the output' ProperƟes' box, change the port used to 'PORTB'.
 Click on 'OK' to close the dialogue box.

 The flowchart should now look like this:

(For Arduino users, please use ports C and D as appropriate).

Adding the LED Array
 Click once on the 'Outputs' box and select the 'LED Array' icon . Place it on the System Panel by moving the

cursor over it and then ‘clicking-and-dragging’ it into posiƟon.
 Change the value of the 'Count' property to '8' to set the number of LEDs in the array.
 Click the 'ConnecƟons' property in the 'ProperƟes' pane. Select 'PORTB' from the drop-down menu to connect

the LEDs to the pins on port B.
 You can change the colour of the LED Array in the 'Colors' secƟon.

Flowcode examples

IntroducƟon to microcontrollers

Adding the switch
 A single push switch will represent the light beam sensor.
 Select Switch (Push,Panel) from Component Libraries > Inputs
 Add or drag it onto the System Panel.
 On the 'ProperƟes' pane 'ConnecƟons' secƟon, check that the 'ConnecƟon' property for the switch is

'$PORTA.0' i.e. the switch is connected to port A bit 0.
 Select Label from Component Libraries > CreaƟon

 Click on the Label property in the 'ProperƟes' pane and replace the default text with "Light beam interrupƟon".
 To adjust the size of the text, click on the ‘PosiƟon’ tab and change the values of ‘Width’ and ‘Height’ under the

‘World size’ secƟon. Move the text to a suitable posiƟon next to the switch.

You should now have a project that looks something like this:

SimulaƟng the program

 Now run the simulaƟon by clicking on the Run buƩon .
 The 'SimulaƟon debugger' window appears - close it as it is not needed.
 Move the cursor over the switch and give the briefest mouse click you can.

What happens depends on how quickly you click, and how fast the PC works!

We want only the 'B0' LED to light, to show a total of 1 sheep. The program runs at high speed, however, and so
keeps cycling through the 'Input' and 'CalculaƟon' steps. As a result, before you have Ɵme to release the push
switch, the total has incremented (increased by one) several Ɵmes. This problem is explored in the next secƟon.

Flowcode examples

IntroducƟon to microcontrollers

The SoluƟon: Adding a Delay
The problem - the program runs too fast!

Before we have Ɵme to release the switch, the program has run through several Ɵmes, adding one to the total each
Ɵme.

We need to slow it down by adding a dela.

 Move the cursor over the 'Delay' icon.
 Drag it onto the main work area and drop it between the CalculaƟon and the Output icons.

The flowchart should now looks like this:

 Double-click on the 'Delay' icon to open the 'ProperƟes' dialogue box.
 Change the value in the 'Delay value or variable:' box to '200' and then click on the ‘OK’ buƩon. This causes a

200 millisecond (0.2 second) delay when the 'Delay' icon is acƟvated. In other words, the system just sits there
and does nothing for 0.2 seconds.

 Now run the simulaƟon again. Providing you don't keep it pressed for too long, you should find that the LED
array shows an increase of 1 each Ɵme you press the switch.

 The program now works saƟsfactorily, providing the sheep rush through the light beam in less than 0.2
seconds. The delay could be increased to allow for slower sheep!

Note: This program shows the total number of sheep in binary format.

Flowcode examples

IntroducƟon to microcontrollers

Example 3: The LCD display
Programs using the LCD display need to use the crystal oscillator. If necessary, in Flowcode, select 'Build' from the
main menu, then 'Project OpƟons...' and finally the 'Configure'
tab. Select the crystal oscillator from the list of opƟons (Build >
Project OpƟons... > Configure).

LCD displays
Flowcode comes with a number of components that add
commonly used subsystems to Flowcode, such as the LCD display, 7-segment display, and analogue inputs devices.

Here, we look at the LCD display, the basic text display subsystem on a range of electronics devices, from
calculators to mobile phones. It can display text or numbers on one or more rows of the display.

In most programming languages, the LCD is one of the last things you learn, as it is quite a complicated device to
program. However, Flowcode takes care of the complexiƟes, making the LCD simple to use. The LCD display
referred to here is the one used on the E-Blocks Combo board and on the LCD display - a two row, sixteen character
display.

Adding the LCD component
Before you can use the LCD, you need to add a LCD component to a Flowcode panel.

 Select the LCD (Generic, 20x4) component from Component Libraries > Displays add it to the System Panel. A
LCD display mimic will now appear on the panel.

 At the top of the 'ProperƟes' pane, the ‘Component’
secƟon idenƟfies the component you have just
selected. By default, the LCD is added to port B. You
could change this, but we will keep it on port B.

 We have now added a LCD display to the program. Is
it ready to use? How do we use it?

 The LCD display requires five connecƟons. It displays
leƩers and numbers conveyed as serial data on this
five wire bus.

 The techniques involved go beyond this tutorial.
Fortunately, Flowcode has some embedded rouƟnes
that take care of the complexiƟes.

 Drag a 'Component Macro' icon onto the flowchart
and open up the corresponding macro dialogue box
by double-clicking on it.

 Now scroll through the 'LCD' secƟon in ‘Components’
and select the macro called 'Start'. This iniƟates the
LCD, clears the display and gets it ready for acƟon.
We examine more LCD macros in the next couple of
secƟons, but for now scroll through the available
macros and take a quick look at each.

Flowcode examples

IntroducƟon to microcontrollers

WriƟng Messages

To display text on the LCD, simply type it in!

 Add another 'Component Macro' to the flowchart and
open the macro dialogue box.

 Select the LCD macro called 'PrintString'. This requires
a single parameter (item of data), 'Text', - the text to
be printed.

 Type the text into the parameter box surrounded by
quotaƟon marks, e.g. "Hello World"

 Run the program and the text will be sent to the LCD
display.

Other LCD funcƟons
There are a number of other useful funcƟons in the LCD macro list:

 'Clear' - Clears the display and resets the cursor posiƟon, (where the display prints next,) to '0,0' i.e. top leŌ.

 'Cursor' - Moves the cursor to the specified locaƟon. The two parameters, ‘X’ and ‘Y’ select the horizontal and
verƟcal posiƟons of the cell respecƟvely. ‘0,0’ is the top leŌ cell, ‘0,1’ the first cell on the second line, ‘3,2’ the
fourth cell on the third line … .

 'PrintNumber' Works like 'PrintString' but prints a number instead of a string. It can be used with variables, or
with actual numbers.

Flowcode examples

IntroducƟon to microcontrollers

Using PrintNumber - an example:

Altogether we will add four Component Macros to the flowchart.
 To the first Component Macro add Start.
 To the second select PrintString and add "Hello World" (with quotaƟon marks).
 To the third select Cursor and add 0,1 to the parameters.
 To the fourth select PrintNumber with the parameter value as 123.
 select 'PrintString' and add "Hello World" (with quotaƟon marks) as the parameter;
 click 'Run' to simulate the program.

You should see a result similar to the one shown below:

TIP: Try changing the values of the Cursor parameters and see where the numbers print.
The ‘y’ value needs to be between 0 and 3 and the ‘x’ value needs to be between 0 and 19.
(between 3 and 17 to see all three figures 1 and 2 and 3).

Flowcode examples

IntroducƟon to microcontrollers

Example 4: a stopwatch

 This example uses example 3 (Using PrintNumber) as a starƟng point.

 Expand the program from the previous example (Using PrintNumber) by dragging a Loop icon below the
PrintString Component Macro.

 Change the text in the 'PrintString' Component Macro to "Hundredths:" (with quotaƟon marks).
 Drag a 'CalculaƟon' icon into the loop.
 Create a variable called 'Count' as an 'Int' type. (iniƟal value 0)
 Double-click on the 'CalculaƟon' icon. In the 'CalculaƟons:' text box type "Count = Count + 1". This will add 1 to

the value of variable count every Ɵme the icon is executed.
 Next drag another 'Component Macro' into the Loop.
 Double-click the 'Component Macro' and find 'Cursor' under the 'LCD' macros.
 Enter '0,1' as parameters to posiƟon the cursor on the first character of the second line.
 Next, drag another 'Component Macro' onto the workspace.
 Select 'PrintNumber' and enter 'Count' as the parameter.
 Now, drag a 'Delay' icon into the flowchart and set the delay to 10ms (which equals one hundredth of a

second).
 Refine the program by clicking on each icon and entering comments on the icon does. It may seem to be a lot of

effort, but it saves Ɵme later as your program will be easier to follow.
 Run the program. You have now made a counter that will count (approximately) the Ɵme elapsed in hundredths

of seconds.

TIP: You can refine the program by clicking on each icon and
entering comments to describe what the icon does.

It may seem like a lot of effort, but it can help with more
complex programs.

Flowcode examples

IntroducƟon to microcontrollers

Example 5 - Using binary numbers - A binary adder

In this secƟon you build a system that makes the
microcontroller add two numbers.

The simplest way to input a binary number is to use a set
of switches aƩached to the input port.

To input two numbers, we need two sets of switches and
two input ports.

To see the result of the calculaƟon, we will use a LED
Array, connected to the output port.

We need a PIC chip with three ports!

Seƫng up the Flowchart
 Launch ‘Flowcode’ and start a new flowchart.
 This Ɵme we take noƟce of this dialogue box:
 We need a PIC with at least three ports.
 Pull the slide bar down to find the 16F1937 PIC.
 Click on it to select it and then click on ‘OK’.
 Click-and-drag a Loop' icon between the 'BEGIN' and 'END'

boxes.
 Click-and-drag an 'Input' icon and drop it between the ends

of the loop.
 Click and drag a second 'Input' icon and drop it in between

the ends of the loop.
 Click and drag an Output icon and drop it just below the

'Input' boxes.
 Click and drag a CalculaƟon icon and place it in between the

second Input icon and the Output icon.
 Your flowchart should now look like this:

(the example image has descripƟons and variables
added).

Flowcode examples

IntroducƟon to microcontrollers

CreaƟng the variables

 Click 'View' on the menu bar and ensure that 'Project Explorer' is checked (View >
Project Explorer).

 Click on the 'Globals' buƩon at the top of the Project Explorer panel. We are going to
create three variables, called ‘input1’, ‘input2’nand ‘sum’. The first two store the
numbers fed in from the switches. The variable 'sum' stores the result of adding
them together.

 Hover over 'Variables' in the 'Project Explorer' panel then click on the
that appears.

 Click 'Add new' and the 'Create a New Variable' dialogue box appears. Type
in the name "input1", and click on the ‘OK’ buƩon - leave the variable type
as 'Byte'.

 Create variables, ‘input2’ and ‘sum’ in the same way.

Seƫng up the inputs
 Right-click on the top 'Input' icon, and select ‘ProperƟes’. The

‘ProperƟes: Input’ dialogue box appears.
 Double-click on the word ‘Input’ in the 'Display name:' box to

highlight it.
 Type "Input the first number" to replace it. This will appear alongside

the 'Input' icon in the flowchart. (Adding labels like this helps users to
understand what is happening.)

 Click on the arrows next to the variable box to open the 'Variable
Manager'. This lists the three variables that you just created.

 Double-click on 'input1' to use this variable in the input box.
 Back in the 'Input ProperƟes' dialogue box, click on the down arrow

at the end of the port window, and select 'PORTB' to replace ‘PORTA’.
 Click on ‘OK’ to close the dialogue box.
 Double-click on the second 'Input' icon. (a quicker way to open the

'ProperƟes' box.)

Configure this input to:
 display the label ‘Input the second number’;
 use the variable 'input2';
 use 'PORTC'.
 Then close the dialogue box by clicking the ‘OK’ buƩon.

For Arduino users these two Ports will need to be set as follows:
Input 1 set to PORTC (to use the Port A switches on the Combo board).
Input 2 set to PORTD (to use the Port B switches on the Combo board).

Flowcode examples

IntroducƟon to microcontrollers

Set up the CalculaƟon

 Double-click on the CalculaƟon icon to
open the ProperƟes dialogue box.

 Change the 'Display name:' to ‘Add the
two numbers together’.

 In the 'CalculaƟons:' box insert:
 sum = input1 + input2

(Either type this in directly, or drag in
variables from the right window and then
insert the '=' and '+' signs in the right
place!)
 Then click on the ‘OK’ buƩon, to close

the dialogue box.

Seƫng up the output
 Double-click on the 'Output' icon, to open the output 'ProperƟes'

dialogue box.
 Click on the arrow next to the 'Variable:' box.
 Double-click on 'sum' to insert it in the box.
 Back at the output 'ProperƟes' dialogue box: change the port used

to 'PORTD'. (Arduino PORTB)
 Click on ‘OK’ to close the dialogue box. The flowchart should now

look like this:

Adding a LED Array

 Click on the ‘Outputs’ tab and select 'LED Array' .
 Place it in the middle of the System Panel by moving the cursor

over the component and then clicking-and-dragging it into
posiƟon,(or right-clicking it and selecƟng 'Center all objects').

 Click next to the 'Count' property under the 'SimulaƟon' secƟon
on the ProperƟes pane and change the number of LEDs to seven.

 Click next to the 'Port' property and select 'PORTD' from the drop-
down menu to connect the LEDs to the pins on port D. (Arduino
PORTB)

 Change the colour of the LED Array to red (0000FF), by changing the 'LED 0' property while the 'Same Color'
property is set to 'Yes'.

Adding the Switches
Two sets of switches are used, one for each binary number. The output port has only eight bits. The biggest number
it can output is 1111 1111, (= 255 in decimal). We are going to limit ourselves to inpuƫng seven bit numbers
meaning that the biggest number we can input is 111 1111, (= 127 in decimal). If we used bigger numbers, we
would overflow the capacity of the output.

 Click on the 'Inputs' tab, select 'Switch Array' and drag it onto the System Panel above the LED Array.
 Open the 'ProperƟes' pane for the switch array. Connect it to port B, using the next to the 'Port' property to

open the drop down menu.(Arduino PORTC)
 Add a second 'Switch Array' to the System

Panel in the same way. PosiƟon it under the
'LED Array' and connect it to 'PORTC'. (Arduino
PORTD)

IntroducƟon to microcontrollers

Slow SimulaƟon
As described earlier, Flowcode allows you to progress through the flowchart one step/icon at a Ɵme, to see the
effect of each on the variables and on the output.

There are three ways to simulate the program step-by-step:
 Click on Go on the Debug toolbar and on the Step Into buƩon (Debug > Step Into)
 Press the F8 funcƟon key on the keyboard.
 Click on the 'Step Into' buƩon on the main toolbar in the simulaƟon secƟon.

Do one of these!

Several things happen:

 a red rectangle appears around the 'BEGIN' icon, showing that this is the current step;
 the 'SimulaƟon debugger' window appears - containing 'Variables' and 'Macro Calls';
 the 'Variables' secƟon lists the three variables that you

defined for this program, and shows their current values -
all zero at the moment.

Ignore the 'Macro Calls' secƟon for the moment.

Now set up two numbers on the switch components.

 Move the cursor over the switch box connected to port B.
 Click on switches B0, B1, and B3, to acƟvate them.
 The switches now look like this:
 You have set up the binary number 000 1011 (= eleven in decimal.)
 (Switch 'B6' gives the most significant bit and 'B0' the least significant bit).
 Set up the number 000 1111 (fiŌeen) on the switches connected to port C.
 Now ‘Step Into’ to the next icon in the program by, for example, pressing F8 once more.
 The red rectangle moves on to the next icon, the 'Loop' icon, but liƩle else happens.
 Press F8 once again. The red rectangle moves on to the first Input icon.
 Press F8 again and the 'Variables' box shows that the 'input1' variable now contains eleven - the result of the

'Input' instrucƟon just carried out.
 Press F8 again and the 'Variables' secƟon shows that 'input2' now contains fiŌeen.
 Press F8 again and the calculaƟon is carried out. The 'sum' variable stores the result.
 Press F8 again. The value stored in 'sum' is transferred to the LEDarray.

It looks like:

Reading from the most significant bit ('D7') to the least significant bit ('D0'), the LED array shows the number 0001
1010. In decimal, this is the number 26. No surprises there then!

Repeat the same procedure using different numbers and step through the
program to check what the sum of the numbers is.

 TIP: Explore adding graphics to your binary calculator to make it
easier to read. Component Libraries > CreaƟon to add digits above
your LEDs.

Flowcode examples

IntroducƟon to microcontrollers

Example 6. Binary logic in control.
Electronic systems can make decisions.

Very oŌen, these are of the form "If this AND this is true, then..."
or "If this OR this is true, then...". They rely on specific
combinaƟons of circumstances in order to take some parƟcular
acƟon.

They are examples of using binary logic. The answer to the “If…”
quesƟon is either “Yes” / “No”, or “True” / “False”, i.e. one of two
possibiliƟes (a binary soluƟon). This answer could be expressed as
a logic 0 or a logic 1 and electronically by a high voltage or a low
voltage.

There is a class of digital electronic components, called logic gates,
that perform exactly these decisions. The inputs and output are
logic 0 or logic 1.

We can program Flowcode to make exactly the same decisions.

6A. Controlling a microwave oven
For reasons of safety, a microwave oven has a door sensor to make
sure that the microwave generator will not operate if the door is
open. Put another way, the generator operates if the door is closed
AND one of the heaƟng control switches is pressed. We can build
this condiƟon into a Flowcode program.

Seƫng up the flowchart
Launch Flowcode with a new flowchart.

Create the flowchart shown opposite. It uses:

 a loop icon
 two input icons
 three output icons
 two decision icons
 two calculaƟon icons
 a delay icon.

Create four variables:

 ‘door’ (to store the state of the door switch).
 ‘control’ (to store the state of the on/off control switch)
 ‘output’ (to control whether the microwave switches on or not)
 ‘count’ (to monitor how many Ɵmes the 1s delay has occurred. Give it an iniƟal value of ten, so that the

microwave oven will operate for 9s).
 Use the default configuraƟon for the loop icon.
 Configure one input icon to store the state of the door switch (on port A bit 0) in the variable ‘door’

Flowcode examples

IntroducƟon to microcontrollers

 Configure the other input icon to store the state of the control switch (on port A bit 1) in the variable ‘control’.
 The upper calculaƟon icon checks to see whether the door AND the control switch have been pressed.

Configure it using the equaƟon output = control & door.
The & signifies the AND operaƟon.
The result of this operaƟon (0 or 1) is stored in the variable ‘output’.

 The upper decision icon checks the value stored in ‘output’.
(If output? is shorthand for If output=1?)
Configure this decision icon.

 When the result of the calculaƟon is 0, the program follows the ‘No’ route from the decision icon and the leŌ-
hand output icon is executed. This sends a logic 0 to the LED, ensuring that it (and the microwave generator) is
switched off.

 When the result of the calculaƟon is 1, the program follows the ‘Yes’ route. The ‘Turn on’ output icon sends a
logic 1 to the LED turning it on.

Configure both of these output icons.
 The lower calculaƟon icon reduces the number stored in the variable ‘count’ by one.

Configure it using the equaƟon count = count - 1
 The iniƟal value of ‘count’ is ten. Provided the number stored in ‘count’ has not reached zero, the program

follows the ‘No’ route. Eventually, aŌer looping enough Ɵmes, the number stored does reduce to zero. The
program then follows the ‘Yes’ route and executes the ‘Turn off’ output icon, which is configured in the same
way as the other ‘Turn off’ icon, to switch off the microwave generator.

 Add a switch array to the System Panel. Configure it to have only two switches, one connected to port A, bit 0

and the other to port A, bit 1.
 Add an LED connected to port B, bit 0 to represent the microwave generator.
 Add labels to the System Panel to idenƟfy the components. PosiƟon them using the World coordinates under

the PosiƟon tab of the label properƟes.
 Now simulate the program step-by-step, using the F8 funcƟon key repeatedly.
 Check what happens for different combinaƟons of switch states and interpret this in terms of the behaviour of

the microwave oven. What happens, for example, if the door is opened while the microwave generator is
operaƟng?

For Arduino the Ports need to be set to PORTC and PORTD (equivalent to A and B on the Combo board).

Flowcode examples

IntroducƟon to microcontrollers

Example 6. Binary logic in control.
6B Controlling the interior light in a car.
The interior light of a car can be controlled by another Boolean logic
equaƟon.

For simplicity, consider a two-door car with the following behaviour:

The interior light turns on when one door (A) OR the other (B) is
opened and stays on unƟl the igniƟon switch (C) is turned on. In
Boolean-speak, we say that the light is on if (A OR B) AND NOT C is
true.

Once again, we can build this condiƟon into a Flowcode program.

Seƫng up the flowchart
Launch Flowcode and start a new flowchart. Create the
flowchart shown opposite, using:

 a loop icon.
 three input icons.
 two output icons.
 a decision icon.
 a calculaƟon icon.

Create four variables:
 door_A (to store the state of the switch on door A).
 door_B (to store the state of the switch on door B).
 ig_switch (to store the state of the igniƟon switch).
 output (to control whether the interior light switches on or

not).

 Use the default configuraƟon for the loop icon.
 Configure one input icon to store the state of the switch on

door A (port A bit 0), in the variable ‘door_A’.
 Configure one input icon to store the state of the switch on

door B (port A bit 1) in the variable ‘door_B’.
 Configure the other input icon to store the state of the

igniƟon switch (port A bit 2) in the variable ‘ig_switch’. The
calculaƟon icon checks to see whether either door has been
opened AND the igniƟon switch is NOT on.

 Configure it using the equaƟon output = (door_A ||door_B)
& !ig_switch

 The || signifies the OR operaƟon and ! the NOT operaƟon. The result of the calculaƟon is stored in the variable
‘output’.

(For Arduino users, please use ports C and D as appropriate).

Flowcode examples

IntroducƟon to microcontrollers

 The decision icon checks the value stored in ‘output’.
 Configure this decision icon.
 When the result of the calculaƟon is 0, the program follows the ‘No’ route from the decision icon and the 'Turn

Off' output icon is executed, ensuring that the light is switched off.
 When the result of the calculaƟon is 1, the program follows the ‘Yes’ route. The ‘Turn on’ output icon sends a

logic 1 to the LED turning it on.
 Configure both of these output icons.
 Add a switch array to the System Panel. Configure it to have three switches, one connected to port A, bit 0, one

to port A, bit 1 and the other to port A, bit 2.
 Add an LED connected to port B, bit 0 to represent the interior light in the car.
 Add labels to the System Panel to idenƟfy the components and posiƟon them as shown in the diagram

(Component Libraries > CreaƟon)

Now simulate the program step-by-step, using the F8 funcƟon key repeatedly.

Check what happens for different combinaƟons of open doors and igniƟon switch states. Interpret the behaviour in
terms of the behaviour of the interior light. What happens, for example, if the door is opened and then closed
shortly aŌer? Is this behaviour correct?

Flowcode examples

IntroducƟon to microcontrollers

 The Programming Exercises are presented here as flexible tasks suitable for further development.

Small, individual tasks can be developed into larger scale projects if desired. Try out the ideas, test
them, experiment, develop your skills and see what you can create.

The aim of the exercises is to develop experience in using Flowcode and in the process, develop
understanding of the programming terminology and techniques it embraces.

Programs can be tested by simulaƟng them in Flowcode, but also downloaded to a microcontroller
and tested on hardware. It is generally assumed that the programmer is using a Microchip PIC MCU
though the exercises are equally applicable to other microcontrollers

The secƟon ends with further Challenges. These are even more open-ended and contain only a brief
specificaƟon.

Programming
exercises

SecƟon 6:

IntroducƟon to microcontrollers

This exercise configures Flowcode to output specific digital signals to the LED array.

IntroducƟon

 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.
 SecƟon 4 - Flowcode First Project. Adding digital outputs - Light the LED
 Flowcode Wiki - Using masks.

Background

CreaƟng outputs

 Change the logic level of a one single pin of a port.
 Send different 8-bit codes to the port of a microcontroller.
 Configure an Output icon.
 Use binary code.
 Manipulate logic output levels.
 Use LEDs to display an output.

ObjecƟves

1. Create a Flowcode program:

 add a single output icon, configured to light all port B LEDs and run the simulaƟon;
 alter the parameters to light only the odd-numbered LEDs and run the simulaƟon;
 do the same but for only the even-numbered LEDs;
 do the same but for only the high ‘nibble’ bits (4 to 7) of port B.

modify this program and see if you can:

 repeaƟng these four steps using hexadecimal rather than decimal numbering;
 lighƟng only the LED on bit 7, by sending an 8-bit value to the port;
 lighƟng only the LED on bit 7, using the 'single bit' output method;
 lighƟng only the LED on bit 7, using the 'masking' output method.

2. Write a program that uses at least twenty Output icons to write different values to port B, one aŌer
the other. Use all four methods in this exercise - hexadecimal, decimal, single bit and masking. Simulate
the program and review the results. (Save the program and download it to the microcontroller).

TIP: Restart the program a number of Ɵmes by pressing the Reset buƩon on the programmer board.

Tasks

IntroducƟon to microcontrollers

In this exercise, you learn how delays are used to slow down the PIC. Microcontrollers work
extremely quickly - a PIC can execute about 5,000,000 assembly instrucƟons, every second. A

human can detect and understand only around three stable images per second. To allow the high-speed PIC to
communicate with ‘slow’ humans, we someƟmes need to slow it down by adding Delay instrucƟons.

IntroducƟon

 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.
 Flowcode Wiki - Loop icon properƟes.

Background

Using delays

 Add a delay to slow down execuƟon of a program.
 Change the delay interval.
 Configure a delay icon.
 Control the speed of a microcontroller.
 Use an oscilloscope to Ɵme events .

ObjecƟves

1. Begin by opening the program created in the last exercise (Exercise 1).

 add Delay icons and configure them so that the output states can be viewed comfortably even at ‘HS oscillator’
speed;

 save the program and download it to the PIC tesƟng the program on the E-blocks boards.

Modify the length of the delays caused by the Delay icons:

 start with a delay of 1s;
 progressively reduce the delay unƟl it is too fast for your eyes to detect the different outputs states;
 download the program to the PIC every Ɵme and test it on E-blocks.
 use an oscilloscope to measure the delays you set up in Flowcode;
 make a detailed drawing of the oscilloscope image, complete with voltage and Ɵming informaƟon and the

delay Ɵme used in the Flowcode program.

TIP: Do not test this in simulaƟon mode - simulaƟon Ɵming is not always accurate because it runs under a
Windows operaƟng system and not in ‘real Ɵme’.

Tasks

IntroducƟon to microcontrollers

A ConnecƟon Point, or ‘goto’ instrucƟon, is oŌen used to create an infinite loop - to repeat a
set of instrucƟons over and over again. (A beƩer way to do this is to use a ‘Loop’ instrucƟon.)

The advantage of a ConnecƟon Point is that it can be used jump out of a loop to a certain locaƟon in the program.
The idea of pulse-width modulaƟon (PWM) is introduced as a means of controlling LED brightness.

IntroducƟon

 Flowcode Wiki - ConnecƟon point icon properƟes.
 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.
 SecƟon 4 - Flowcode First Project. Adding digital outputs - Light the LED.

Background

Using connecƟon points

 Use ConnecƟon Points to introduce uncondiƟonal branching in a program.
 Introduce PWM as a means of controlling the brightness of LEDs.
 Create an infinite loop.
 Manipulate logic output levels.
 Use LEDs to display an output.

ObjecƟves

1. Write a program to see if you can:
 Use Delay, Output and ConnecƟon Point icons to light the even and odd LEDs of port B, alternately on and off,

with a 300ms interval between, in an infinite loop;
 test the program at first ‘step-by-step’ and then conƟnuously in the Flowcode simulator.;
 use Delay, Output and ConnecƟon Point icons to flash the high nibble and low nibble LEDs of port B alternately

on and off, with a 300ms interval between, in an infinite loop;
 use Delay and Output icons to flash all the LEDs of port B on and off with a 500ms interval in between, in an

infinite loop;
 download the program to the microcontroller and test it.

TIP: Make the delays in these program very short and make the on and off Ɵmes asymmetrical, (e.g. on
for 8ms and off for 12ms).

This is a soŌware PWM generator. When you run it, the intensity of the LEDs is lower. They flash on
and off too fast for our eyes to observe. Instead, we see the intensity change.

2. Write a program that:

 lights LEDs on the four most-significant bits, (MSB,) of port B and keeps them on;
 dims the intensity of the LEDs on the four least-significant bits, (LSB,) of port B using PWM, to create an

observable difference in intensity between the MSB LEDs and the LSB LEDs;
 use an oscilloscope to examine the signal controlling one of the four LSB LEDs;

TIP: The MSB is the leŌ-most bit and the LSB is the right-most bit.

Tasks

IntroducƟon to microcontrollers

Modern microcontrollers, like the PIC, are able to do simple mathemaƟcal tasks with 8-bit
numbers at very high speed. As the calculaƟons get more complex or the numbers rise above

an 8-bit value, then the execuƟon Ɵme lengthens dramaƟcally. Flowcode allows complex calculaƟons using up to
16-bit numbers and takes care of all the complexiƟes. However, these may slow down execuƟon of the program.

IntroducƟon

 Variables - Example 1. Adding digital inputs - Where's the fire?

 Flowcode Wiki - CreaƟng variables.
 Digital inputs - Example 1. Adding digital inputs - Where's the fire?

 Flowcode Wiki - CalculaƟon icon properƟes.
 SecƟon 1 - IntroducƟon to microcontrollers.

Background

Performing calculaƟons

 Create and use a variable.
 Configure a calculaƟon icon to perform arithmeƟc and logic calculaƟons.
 Create and manipulate variables.
 Perform calculaƟons.
 Use LEDs with current limiƟng resistors.

ObjecƟves

1. Create a flowchart that:

 uses a variable called ‘counter’ containing an iniƟal value of ‘1’;
 displays the value stored in the variable ‘counter’ on LEDs.
 change the simulaƟon speed in ‘Build > Project OpƟons... > General OpƟons’ to ‘Normal’;
 simulate the program to test that it works.

modify Program 1 by:

 adding a CalculaƟon icon to double the value stored in the variable ‘counter’;
 displaying this new value on LEDs.
 using an infinite loop to repeat these steps conƟnuously with a 300ms delay between them.
What do you see? (This is called a ‘running light’.)
 replacing the 'mulƟply by 2' with 'counter = counter + 1'.

 What do you see now? (You just programmed a binary counter.)

2. Modify Program 1 to display the result of the following calculaƟons on the LEDs of port B:

 45 + 52;

 45 AND 52;

 45 OR 52;

 NOT 45;
 (1+3)*(6/2);
 VAR2 = VAR1 * 3 (where variable ‘VAR1’ stores the number 18).On paper, check if the results are correct.

Tasks

IntroducƟon to microcontrollers

RepeaƟng a set of instrucƟons, for an exact number of Ɵmes, WHILE or UNTIL a

condiƟon is met is one of the most powerful programming operaƟons.
TIP: The slow simulaƟon or 'Step Over' funcƟon in the Flowcode simulator is useful to debug complex
programs.

IntroducƟon

 Flowcode Wiki - Loop icon properƟes.
 Flowcode Wiki - ConnecƟon point icon properƟes.

 Flowcode Wiki - CreaƟng variables.
 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.
 SecƟon 4 - Flowcode First Project. Adding digital outputs - Light the LED.

Background

Using loops

 Create and use a ‘running light’ program, using the ‘mulƟply-by-two’ method.
 Create and use a ‘running light’ program, using the ‘shiŌ-right’ method.

 Create and populate an array.
 Create a condiƟonal loop.

ObjecƟves

1. Write a program to:

 make an 8-bit binary counter, using a Loop icon, to count up from 0 to 255, then reset and repeat the count;
display the counter value on the LEDs of port B.

modify your program to

 make the counter count up from 0 to 255 and then count back down to ‘0’:

TIP: use two loops inside an infinite loop so that the process repeats indefinitely;

 Download the program to the microcontroller and test it at full speed.

2. Remember KITT From Knight Rider or the Cylon robots from BaƩlestar GalacƟca?.

Write a program to make a simple ‘running light’ that runs from port B, bit 0 to port B bit 7 and then back to port B
bit 0, repeatedly:

 Try using the ‘mulƟply-by-two’ method;
 Try using the ‘shiŌ right’ method;

Modify your program to create a 16-bit running light, using the LEDs from port A and B.
TIP: Use only loops, no decisions. (Download the program to the microcontroller and test it).
Create a flowchart that contains an array of four variables, called ‘Matrix[x]’ which stores

3. Create a flowchart that contains an array of four variables, called ‘Matrix[x]’ which stores the
following values: Matrix[0] =129 Matrix[1] =66 Matrix[2] =36 Matrix[3] =24 (Display the outputs
on the LEDs of port B).
 Use two ‘do-while’ loops to create an infinite sequence: Matrix[0]-Matrix[1]-Matrix[2]-Matrix[3]-

Matrix[2]-Matrix[1]-Matrix[0]-Matrix[1]-..... ;
 Refer to the four variables as ‘Matrix[x]’ where ‘x’ is a separate variable, known as the index of the

array. (Download the program to the microcontroller and test it).

Tasks

IntroducƟon to microcontrollers

Adding digital inputs to a microcontroller circuit is quite easy but is a big step forward. This allows
external signals to influence how the program reacts.

IntroducƟon

 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.
 SecƟon 4 - Flowcode First Project. Adding digital outputs - Light the LED.

Background

Inpuƫng data

 Input data from switches.
 Use loops to create LED sequences.
 Configure an input icon.

ObjecƟves

1. Write a program to show the status of the switches connected to a chosen port,
on the LEDs connected to a different port. eg. when a switch is pressed connected to
port A, the corresponding LED on port B lights.

Modify the program so that:
 the LED stays lit for 2s.
 when switch ‘0’ is pressed, LED 1 is lit.
 when switch ‘1’ is pressed, LED 2 is lit and so on.
 when switch ‘7’ is pressed, nothing happens.

Explore as many combinaƟons as you can.
(Download programs to the microcontroller and test them).

2. Write a program to create a counter that:
 contains two loops.
 counts up when switch ‘0’ is pressed.
 counts down when switch ‘1’ is pressed.
 displays the count on the LED array of a suitable port.

(Download programs to the microcontroller and test them).

3. Write a ‘running light’ program that:
 contains two loops.
 causes the LEDs to ‘run’ leŌ when switch ‘0’ is pressed.
 causes the LEDs to ‘run’ right when switch ‘1’ is pressed.
 displays the count on the LED array of a suitable port.

(Download programs to the microcontroller and test them).

Tasks

IntroducƟon to microcontrollers

Earlier programs included simple decision-making, using loops and connecƟon points.
Now we look in detail at the Decision icon, widely known as the ‘if…then…else’ structure, probably the
most widely used command line in any program.

IntroducƟon

 Flowcode Wiki - Decision icon properƟes.
 Flowcode Wiki - ConnecƟon point icon properƟes.

 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.

Background

Making decisions

 Configure Decision icons and hence add condiƟonal branching to a program.
 Control the frequency at which LEDs flash.

 Use LEDs to display output logic levels.
 Use temporary memory.

ObjecƟves

1. Write a program that uses switches to produce a reversed sequence on the LEDs:

 when switch ‘0’ is pressed, ‘LB7’ lights;
 when switch ‘1’ is pressed, ‘LB6’ lights;

and so on…

2. Write a program that creates an 8-bit counter, counƟng from ‘0’ to ‘255’ and then back to ‘0’ repeatedly:

 using Decision icons instead of Loop icons.
 using two switches connected to port B, bits 0 and 1;
 counƟng up when switch ‘0’ is pressed;
 counƟng down when switch ‘1’ is pressed;
 displays the current count on the LEDs connected to Port A;
 save this program, download it to the microcontroller and test it.

3. Write a program that counts from ‘0’ to a value stored in a variable called ‘count’ when switch ‘0’ is pressed and
then waits unƟl switch ‘1’ is pressed before counƟng down to ‘0’:

 using two switches connected to port B, bits 0 and 1;
 displaying the current value of the count on the LEDs on Port A;

save this program, download it to the microcontroller and test it.

4. Write a program that makes all eight LEDs on port B flash on and off at a frequency of 1Hz, i.e. taking one second
for an ‘on-and-off’ cycle. In addiƟon:

 the LEDs flash faster if switch ‘0’ is pressed;
 they flash more slowly if switch ‘1’ is pressed;

save this program, download it to the microcontroller and test it.

Tasks

IntroducƟon to microcontrollers Making decisions

5. Write a program that makes all eight LEDs on port B light when switch ‘0’ is pressed the first Ɵme and go off
when it is pressed again:

Save this program, download it to the microcontroller and test it.

6. A car has two interior lights, one in the front of the car, the second in the rear.

Write a program to simulate this scenario using LEDs and five switches to control them.

 Use switches ‘0’ to ‘3’ represent door switches that indicate if a door is open or not;
 Use switch’4’ indicates that the boot (trunk) is open or not.
 Light both LEDs when any door opens;
 Light only the ‘rear’ LED when the boot is opened;

Save this program, download it to the microcontroller and test it.

TIP: Assume that the switches are closed when the doors are open.
 This may be easier to simulate with ‘push-to-make’ switches.

7. A car’s steering wheel has switches on it that control the external lights. Write a program to simulate the
control of the lights.

 Use a switch to control the leŌ direcƟon-indicator (choose a relevant LED), which flashes on
 for 250ms and then off for 250ms repeatedly unƟl the switch is released.
 Use another switch to control the right direcƟon-indicator (choose a relevant LED), in the same way.
 Use two LEDs as brake lights controlled by a switch which light up for as long as it’s pressed.
 Create headlights which light when a switch is pressed and stay on unƟl it is pressed again.
 Finish off with a pair of foglights in the same way.

TIP: Don’t aƩempt to write this program all at once. Divide it into subsecƟons and solve each
separately before puƫng them all together.
To make it easier, use the labelling feature of Flowcode to label switches and LEDs.

8. Six sheep are allowed to wander between two fields.
There are two sensors between the fields. Write a
program that counts and displays the number of sheep in
each field. Simulate this scenario using two switches to
represent the sensors.

Show the results in binary form on the LED array
(use four LEDs for the west field and four for the east
field).
Use two switches to represents the sensors.

TIP: Assume that each sheep is longer than the gap between the sensors. Think about the various
scenarios that could happen. A sheep might trigger a sensor and then back out. Can a sheep trigger
both sensors and then back out? When does a sheep count as being in the east field?

Tasks

IntroducƟon to microcontrollers Programming LCDs

Using LEDs to display outputs can be limiƟng.

The LCD is an alternaƟve way to display data, both leƩers and numbers, for ‘non binary’ humans.

IntroducƟon

 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.
 Example 3. The LCD display - PosƟng messages

Background

Create, populate and manipulate string variables.
Control the display of text and numbers on an LCD.
Use an LCD as an output device for the microcontroller.
Configure a Component macro for the LCD.

ObjecƟves

1. Write a program that displays the text “Hello World” in the centre of the boƩom line of the LCD.

2. Write a program that shows an increasing count (decimal) on the LCD screen. Modify the program so
that it counts up when a switch is pressed and counts down when a different switch is pressed (use
Loops or Decisions).

3. Write a program to show the status of the switches aƩached to the first port. Every Ɵme a switch is
pressed, the corresponding LED of the second port lights up and the value of the decimal equivalent is
displayed on the LCD.

4. Write a program to show the status of the switches aƩached to the first port on the LEDs of the second
port and on the top line of the LCD and then:

 mulƟply this binary number by 100.
 display the result on the boƩom line of the LCD, with “[x 100 =]” displayed in front of it.

Tasks

IntroducƟon to microcontrollers

5. Write a program that scrolls the lines of text given below, one line at a Ɵme. IniƟally, the text is
centred on the boƩom line of the display for 2s. Then it moves up to be centred on the top line for 2s, to
be replaced on the boƩom line by the next line of text, and so on.

Text:

“There are only”

”10 kinds”

”of people”

“Those who”

“understand”

“BINARY”

“and those who”

“DON’T.”

(Enclose the program in an infinite loop and test on the LCD).

Tasks

Programming LCDs

IntroducƟon to microcontrollers Using the keypad

A numeric keypad is used in many electronic devices, and in some (eg. mobile phone), it is
used as a numeric keypad and also as a way to type text instead of numbers. There are twelve buƩons on the
keypad, yet the keypad is connected to the microcontroller by only eight lines. This problem is solved by using
mulƟplexing.

IntroducƟon

 LCD - Exercise 8 - Programming LCDs.
 Flowcode Wiki - String manipulaƟon funcƟons.

 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.

Background

 Input text and numbers from a keypad and display messages on the LCD.
 Use ASCII code to transmit this data.
 Use mulƟplexed inputs.
 Configure a Component macro for the keypad.

ObjecƟves

1. Display numbers that are pressed on the keypad on the LCD.

 Display one number one at a Ɵme for as long as the buƩon on the keypad is
pressed.

 Can you re-write this program without using the Keypad Component macro?

 Extend this program to display numbers that are pressed on the keypad one aŌer another on the top
row of the LCD.

See if you can refine the program to:

 Clear the display when ‘#’ is pressed.
 Display a maximum of fiŌeen characters and display a warning on the boƩom row of the LCD when

this maximum is exceeded.
2. Write a program to:

 add together two numbers, less than 9999, entered via the keypad;
 display the two numbers, the ‘+’ and ‘=’ and the resulƟng sum on the top row of the LCD;
 display a warning on the boƩom row when ‘9999’ limit is exceeded;

3. Write a program for a simple guessing game, where:

 a player needs to guess a number between ‘0’ and ‘9’;
 the secret number is pre-programmed into the PIC;
 the LCD displays, on the top row, the latest guess entered via the keypad;
 the LCD displays a message, on the boƩom row, indicaƟng whether the guess is too high or too low;

Extend program 3 so that: the secret number is in the range ‘0’ to ‘255’. Extend program 3 again so that: the secret
number is in the range ‘0’ to ‘9999’.

4. Write a program to use the keypad, as on a mobile phone, to input text to the microcontroller.

 Use ASCII code to transmit the data.
 Use the character ‘*’ for a space.
 Clear the display when ‘#’ is pressed.
 Display a message on the boƩom row when the text has more than ten characters.

Tasks

IntroducƟon to microcontrollers Analogue inputs and the EEPROM

The 16F18877 PIC MCU accepts 35 separate analogue inputs. Newer devices may
have even more. An analogue signal on one of these inputs can be translated into a

10-bit digital binary number. We can choose to use only the eight most-significant-bits of this 10-bit
number or to use the full 10-bit number. Be aware that working with 10-bit numbers in an 8-bit
microcontroller like the PIC MCU, needs careful program wriƟng.

IntroducƟon

 LCD - Exercise 8 - Programming LCDs.
 Flowcode Wiki - String manipulaƟon funcƟons.
 SecƟon 1 - IntroducƟon to microcontrollers.
 SecƟon 2 - Using E-blocks.

Background

 Create data loggers, using 8-bit and 10-bit data from the ADC.
 Configure an analogue input.
 Enter data via switches.
 Enter informaƟon from light and temperature sensors.
 Configure and use the EEPROM.
 Scroll through EEPROM data.
 Display text and numerical data on the LCD.

ObjecƟves

1. Write a program to display an 8-bit number, equivalent to the analogue input
voltage from the light sensor on the Sensor board. Try connecƟng a voltmeter to

measure the analogue input voltage. (Save the following programs and download them to the
microcontroller for tesƟng).

2. Modify the program from Task 1 to display data from the ‘pot’ on the Sensor board. Try to convert the
ADC 8-bit output into a voltage reading between 0 and 5V, making it as accurate as the 8-bit mode
allows. Use a voltmeter to measure the analogue input voltage.

3. Modify program to display, on the LCD, a 10-bit number equivalent to the analogue input voltage
from the ‘pot’ on the Sensor board. Use a voltmeter to measure the analogue input voltage. Try to
convert the ADC 10-bit output into a voltage reading between 0 and 5V, making it as accurate as the 10-
bit mode allows. Use a voltmeter to measure the analogue input voltage.

4. Write a program to monitor the lighƟng in a room over a 24 hour period:

 using the analogue signal from the light sensor on the Sensor board

 storing light measurements on the EEPROM.
 sampling at the highest rate possible, given that the PIC MCU has 256 bytes of EEPROM memory on

board.
 and displaying each sample with its sample number, on the LCD.
 by scrolling forwards through the samples by pressing switch ‘0’ or scrolling backwards by pressing

switch ‘1’.

TIP: Increase sampling rate so that you don’t have to spend 24 hours in tesƟng.

Tasks

IntroducƟon to microcontrollers Using soŌware macros

In code-based programming languages, like ‘C’ and ‘BASIC’, a soŌware macro would be called
a ‘subrouƟne’ or ‘funcƟon’ or ‘procedure’. As programs get bigger, they use certain

combinaƟons of instrucƟons over and over again. These programs become harder to understand and read.
RouƟnes that are re-used can be put into a soŌware macro, which can be called whenever it is needed in the main
program. Making use of these soŌware macro’s ‘lightens up’ the main program and makes it much easier to read.

IntroducƟon

 Flowcode Wiki - SoŌware macro icon properƟes

 SecƟon 2 - Using E-blocks

Background

 Use soŌware macros to simplify the structure of a program.
 Create soŌware macros.
 Use closed loop control.
 Use PWM to control the brightness of LEDs.

ObjecƟves

1. Write a program that selects and runs one of three different programs by using two switches:

 switch ‘0’ selects one of three programs (which you developed earlier);
 ‘X’: an 8-bit binary up-counter, displayed on the LEDs.
 ‘Y’: an 8-bit binary down-counter, displayed on the LEDs.
 ‘Z’: an 8-bit bidirecƟonal ‘running light’, displayed on the LEDs.

 the LCD displays a text message idenƟfying the selected program;
 switch ‘1’ acƟvates the chosen program when pressed.
 the three programs are placed in soŌware macro’s.

download this program to the microcontroller and test it.

modify program 1 so that:

 If switch ‘0’ is pressed while one of the three soŌware is running, execuƟon stops immediately and focus
returns to the main loop and waits for a new selecƟon.

download this program to the microcontroller and test it.

 modify program 1 again so that:

 if switch ‘0’ is pressed while one of the three soŌware is running, execuƟon stops and returns to the main
loop, as before, but it stores the value displayed on the LEDs;

 when the next selecƟon is made, that macro starts the LEDs from where the previous one leŌ off, making the
transiƟon between them smoother’

download this program to the microcontroller and test it.

Tasks

IntroducƟon to microcontrollers Using external interrupts

In earlier exercises, the microcontroller did not necessarily react to inputs straight away
because it was busy doing something else. The external interrupt features of the PIC solve

this problem. On a 16F1937, the external interrupts are on pin ‘RB0’ - a single pin interrupt and on port B as an
‘interrupt on change (IOC)’. If these interrupts are iniƟalized correctly, then a change on port B can cause the
program to stop execuƟon immediately and switch to execuƟng the appropriate interrupt macro. We then have
what is called a ‘real Ɵme’ execuƟon.

IntroducƟon

 SecƟon 2 - Using E-blocks.
 Flowcode Wiki.

Background

 Create and use single-pin interrupts.
 Create and use interrupt-on-change (IOC) interrupts.
 Use real Ɵme operaƟon of a microcontroller.

ObjecƟves

1. Write a program to Ɵme how many seconds have passed since a program was reset and displays the result on an
LCD. Use a variable called count whose value is displayed on the LEDs (don’t use an interrupt). Use a 1s delay. A
rising edge on pin RB0 should call a macro that adds one to count.

Re-design this program using an interrupt (single-pin) on RB0.

Now re-design it using both kinds of external interrupt so that:

 triggering the single-pin interrupt increments ‘count’ (count = count + 1)
 triggering the IOC interrupt decrements ‘count’ (count = count - 1)

2. Write a program to make an electronic dice that :

 counts from 1 to 12;
 display the result on the LCD;
 starts ‘rolling’ when switch ‘0’ is pressed;
 stops ‘rolling’ when switch ‘0’ is pressed again.

download this program to the microcontroller and test it.

TIP: The LCD should display numbers from 1 to 12, one aŌer the other, over and over again rapidly, at 20 ms
intervals - much to fast to see with a human eye.

modify program 2 so that:

 the dice keeps ‘rolling’ as long as switch ‘0’ is held down;
 stops ‘rolling’ when the switch is released;
 at that point displays the number on the LCD.

Tasks

IntroducƟon to microcontrollers

3. Write a program to make a reacƟon Ɵmer that :

 lights all LEDs iniƟally;
 keeps them lit for around 6s;
 switches them off and starts a Ɵmer;
 stops the Ɵmer when the player presses switch ‘0’;
 then displays the resulƟng ‘reacƟon Ɵme’ on the LCD.

 (Use a variable that is incremented every 10ms.)

download this program to the microcontroller and test it.

modify program 3 to limit the Ɵme allowed to the size of the used variable and:

 displays a message is displayed on the LCD when this size is exceeded;
 includes a trap to prevent cheaƟng by simply holding down switch ‘0’ conƟnuously.

download this program to the microcontroller and test it.

Tasks

Using external interrupts

IntroducƟon to microcontrollers Using Ɵmer interrupts

The other type of interrupt funcƟon in Flowcode is the Ɵmer interrupt. These allow you to perform soŌware tasks
at precisely predetermined Ɵme intervals - a really useful feature when developing Ɵme criƟcal applicaƟons and
clocks.

IntroducƟon

 Flowcode Wiki - What is a 7-segment display?

 SecƟon 2 - Using E-blocks.

Background

 Create and use Ɵmer interrupt.
 Use the prescaler to create accurate Ɵme intervals.
 Trigger the Ɵmer using the crystal or an external event.

ObjecƟves

1. Write a program to produce a precise ‘seconds’ Ɵmer that displays the result on the LCD and starts
when the microcontroller is reset. Use a 1s delay. Don’t use a Ɵmer interrupt.
(Download this program to the microcontroller and test it using your watch).
Rewrite the program using a Ɵmer interrupt.

2. Write a program to create a basketball Ɵmer that starts when switch 0 is pressed and displays the Ɵme
elapsed on the LCD. Make the LEDs flash on and off when 30s has elapsed (the Ɵme allowed for the team
with the ball to make a goal aƩempt).
TIP: Use a single-bit interrupt on pin RB0 to start the Ɵming.)

Tasks

The 16F1937 has several Ɵmers, but we look at only two: ‘TMR0’ (Timer 0) and ‘TMR1’ (Timer 0).

TMR0 can be triggered by the crystal or by a transiƟon on the ‘T0CKI’ pin ‘RA4’.

The internal clock has a frequency of ‘crystal clock frequency’/4, i.e. 19,660,800/4 = 4,915,200Hz.

The TMR0 prescaler can be set from 1:2 to 1:256. For this exercise, set it to 1:256, so that every 256 clock pulses
cause the TMR0 to increase by 1. This happens at a frequency of 4.915.200/256 = 19.200Hz.

Every Ɵme this 8-bit Ɵmer ‘overflows’ (reaches 256), it generates an interrupt. This happens with a frequency of
19.200/256 = 75Hz, so that the main program is stopped 75 Ɵmes per second and so the Ɵmer interrupt macro is
executed 75 Ɵmes per second.

Instead of using the crystal, this Ɵmer can also be ‘clocked’ by an external event, as when measuring motor speed
etc.

TMR1 can be triggered by the crystal oscillator or by a transiƟon on the ‘T1CKI’ pin ‘RC0’.

Its operaƟon is similar to that of TMR0, except that it uses different prescaler values.

Timer arithmeƟc

IntroducƟon to microcontrollers

3. Write a program to produce a precise clock that displays the Ɵme elapsed since the last reset, in hours,
minutes and seconds on the LCD (test with a watch).

Modify this program so that:

 switch ‘0’ stops the clock when pressed the first Ɵme.
 switches ‘1’, ‘2’ and ‘3’ can be used to change the displayed Ɵme to the actual Ɵme.
 switch ‘0’ restarts the clock when pressed a second Ɵme.

4. Write a program to produce a Ɵmer that counts down from 01:00:00 to 00:00:00 in seconds and then
lights all the LEDs.

(Download to the microcontroller and test it with your watch).

Tasks

Using Ɵmer interrupts

IntroducƟon to microcontrollers AddiƟonal challenges

1. Develop a dimmer for all the LEDs that reacts to measured light intensity.

 The light sensor monitors the light intensity in a room. When this intensity drops, a control circuit sends more
power to the lights in that room and vice versa when the intensity increases.

 Use the LEDs to simulate the dimmed lights. This is done by programming a soŌware PWM output to all LEDs
on port B. When the PWM ‘on’ Ɵme increases, the LEDs get brighter, etc.

 Put this program in a Ɵmer interrupt macro.
 The main loop monitors the analogue input from the light sensor on the sensor board, on port C.
 When the light sensor detects less light, the LEDs need to shine brighter. The opposite should happen with the

LEDs when the light level, measured by the light sensor, intensifies.
 The period of the PWM signal stays a constant 20ms at all Ɵmes, set using a Ɵmer interrupt.
 Download this program to the microcontroller and test it. If you have a 2 channel oscilloscope, measure the

analogue input of the light sensor on one and the PWM output to one of the LEDs on the other.
 Using a similar approach, develop a temperature controller for an incubator. The BL0129 Grove
 Sensor board can be used with the Grove Temperature sensor module. Use the LEDs to simulate the acƟon of

a heater.

2. Three judges vote on variety acts in a X-factor-like game show. When two or more judges vote ‘Yes’, the act
progresses to the next round.

 Design a program to combine the judges’ votes into a pass/fail verdict.
 Create two LED light sequences, one to indicate pass and the other fail.

3. Design an automaƟc watering system for a sealed terrarium (glass plant container). Use the Grove Temperature
and Humidity sensor module to sense when the terrarium needs watering.

 The output device is a motor-driven pump that runs for a set period of Ɵme once triggered. There should be a
‘rest’ period aŌer watering before the system can operate again.

4. Create a combinaƟon lock, using the BL0138 Keypad board to input a four-digit ‘PIN’.

 Add a feature that ‘locks out’ a user aŌer three unsuccessful aƩempts.
 Modify it to prevent further access to the system for a period of Ɵme such as ten seconds.
 Use the LCD display to show the numbers selected on the keypad and the number of aƩempts made.

5. Develop a proximity switch for a security light using the Grove Ultrasonic Ranger sensor module. The system
should switch on four lights (12V lamps) when a person approaches within one metre of the sensor and so makes
use of the BL083 Relay board.

6. Use the Grove Infrared Receiver sensor module to Ɵme the swing of a pendulum without impeding it.

7. Design a system to drive the DC motor (and sensor) on the Actuators training panel at a steady speed.

 Add a feature to modify this set speed.

8. Design a system to drive the stepper motor on the Actuators training panel so that it rotates, in 15through one
complete circle and then reverses back to its iniƟal posiƟon in the same manner.

IntroducƟon to microcontrollers

Arduino

adjustments

Appendix 1:

IntroducƟon to microcontrollers

ARDUINO: SECTION A

BL0055 Arduino Shield

 The board has three ports, labelled A0-A5, D0-D7 and D8-D13.
 Port D0-D7 offers full 8-bit funcƟonality.
 Port A0-A5 and D8-D13 has 6-bit funcƟonality.
 It can be powered from an external power supply, delivering 7.5V to 9V or from a USB supply.
 If the Reset switch is pressed, the program stored in the Arduino will restart.
 The board is USB programmable via a programming chip. This takes care of communicaƟon
 between Flowcode and the Arduino device.
 The Arduino executes one instrucƟon for every clock pulse it receives.
 (Note - a single instrucƟon is NOT the same as a single Flowcode symbol, which is compiled into C and

then into Assembly and probably results in a number of instrucƟons).
 This device uses a 16MHz crystal.
 The board will detect whether External power supply or USB power supply should be used.
 Use of the AVR ISP tool from Microchip via the ICSP header.
 Usually supplied with an Arduino Uno device.
 Provides power to the downstream E-blocks boards via the port connectors.
 Contains the Matrix Ghost chip which allows for real Ɵme in-circuit debugging and pin monitoring

when combined with Flowcode.

Appendix 1

IntroducƟon to microcontrollers

ARDUINO: SECTION B

SelecƟng Arduino in Flowcode

On opening Flowcode, you are presented with the ‘Welcome’ screen. Click on New Project.

Select Arduino Uno R3 PDIP from the Free targets list. Click “New <Arduino...” buƩon above

This brings up the standard Flowcode environment. A flowchart can now be developed into a program
that can be tested within the Flowcode simulaƟon mode, or saved and compiled to the Arduino board.

Follow the Examples and Exercises, taking Port changes into consideraƟon where required.

E.g. Above is how Flowcode First Program (Page 42) would look to an Arduino user.

Here, Arduino users are using PORTC instead of PORTA.

 (PORTC on the Arduino ’Maps’ to PORTA of the Combo board)

Appendix 1

IntroducƟon to microcontrollers

ARDUINO: SECTION DC

E-blocks2:

Eblocks2 uses the ‘Click’ boards for its SPI connecƟons. Using the BL0106 ‘Click’ board E-block, you can
put the board into the (D8-D13) port as shown in the picture below:

Appendix 1

IntroducƟon to microcontrollers

ARDUINO: SECTION D
Seƫng up the hardware:
This diagram shows you how to set up the E-blocks hardware with Arduino. Plug your Arduino into the
L0055 board as shown, then the combo board into the ports labelled (A0-A5) and (D0-D7).

Note: Despite having two hardware port connecƟons between the EB0114 Development board and the
BL0055 Shield, the Arduino Uno can only provide 6 general purpose I/O connecƟons on port C, (A0-A5).
Therefore, LEDs ‘6’ and ‘7’ and switches ‘6’ and ‘7’ on Port 1 of the Development board, cannot be used
with the Arduino Uno.

In order to program the Arduino Uno board directly from within Flowcode, you must ensure that the
appropriate drivers are installed. We recommend you visit the Arduino site and download the latest
drivers from there.

Appendix 1

IntroducƟon to microcontrollers Appendix 2

BTEC NaƟonal

Level 3

Unit 6 mapping

Appendix 2:

IntroducƟon to microcontrollers Appendix 2

Covered?

trans i stor output s tage

Relay

s eria l communications

I2C device interfacing

A4 Selecting hardware devices and system design

A5 Assembling and operating a microcontroller system

s pea ker or piezo transducer

Output interfa cing requirements

power requirements and drivers

PWM

Electromecha nica l

Relay

direct current motor

Servo

Audio

buzzer or s i ren

A3 Output devices

Optoelectronic

l i ght-emitting diode (LED) – indicator and IR

7-segment display

l iquid crysta l di s play (LCD)

s ignal conditioning

analogue-to-digi tal (ADC) convers ion

modular s ensor boards

PWM

s eria l communications

Inter-Integrated Circuit (I2C)

Movement/orientation

ti l t switch

Pres ence

micro-swi tch

Ultra sonic

Input interfacing requirements

Thermistor

temperature sensors

envi ronmenta l sens or – temperature and humidity

Light

l ight-dependent res i stor (LDR)

IR – phototrans istor, photodiode or IR receiver

A2 Input devices

User i nput:

digi ta l – s witches and buttons

analogue – control potentiometer

Temperature

hardware fea tures – interrupts , s tack, PWM

requi red peripherals

cos t a nd a ccess ibi l i ty

ease of use

s oftware and progra mming langua ge

opera ting voltages and power requi rements

A Investigate typical microcontroller system hardware

A1 Control hardware

I/O ca pabi l i ties – number, type (a nalogue/digi ta l), ports

hardware speci fication – bus width, process or speed

memory – RAM, ROM

IntroducƟon to microcontrollers Appendix 2

Covered?

trans i stor output stage

Relay

s eria l communications

I2C device interfa cing

A4 Selecting hardware devices and system design

A5 Assembling and operating a microcontroller system

s peaker or piezo transducer

Output interfacing requi rements

power requi rements and drivers

PWM

Electromechanica l

Relay

direct current motor

Servo

Audio

buzzer or s iren

A3 Output devices

Optoelectronic

l i ght-emitting diode (LED) – indicator and IR

7-segment display

l iquid crys ta l dis play (LCD)

s igna l condi tioning

ana logue-to-digi ta l (ADC) convers ion

modular s ensor boards

PWM

s eria l communications

Inter-Integrated Ci rcuit (I2C)

Movement/orientation

ti l t switch

Pres ence

micro-swi tch

Ultras onic

Input interfacing requirements

Thermis tor

tempera ture sensors

environmental sensor – tempera ture and humidity

Light

l ight-dependent res i s tor (LDR)

IR – phototra ns is tor, photodiode or IR receiver

A2 Input devices

Us er input:

digi ta l – s wi tches a nd buttons

ana logue – control potentiometer

Temperature

hardware features – interrupts , s tack, PWM

required peripheral s

cost and access ibi l i ty

ease of use

software and programming language

operating vol ta ges and power requirements

A Investigate typical microcontroller system hardware

A1 Control hardware

I/O capabi l i ties – number, type (analogue/digi ta l), ports

hardware speci fi cation – bus width, process or speed

memory – RAM, ROM

IntroducƟon to microcontrollers

C System development cycle Project

C1 Development processes Project

Stages of the development process .

C2 Documentation Project

A portfol io of evidence produced

throughout the development process .

Appendix 2

IntroducƟon to microcontrollers

Version Control

 29 11 21 Converted into Publisher and updated. Version 3.

